Basic electroweak processes and neutrino oscillations
Let; use the Feynman rules derived last lecture to calculate the decay width of the top quark.

$$
\begin{array}{r}
\Gamma_{t \rightarrow \text { amptring }}<\left.\left.\right|_{t \rightarrow b w}\right|^{2}+\left|\mu_{t \rightarrow s w}\right|^{2}+\left|\mu_{t \rightarrow d w}\right|^{2} \\
\alpha\left|V_{t b}\right|^{2} \\
\alpha\left|V_{t s}\right|^{2} \alpha\left|V_{t d}\right|^{2}
\end{array}
$$

Experimataly, $V_{t b} \gg V_{t s}, V_{t d}$, so the top quark decays essentials 100% of the time into 6 quarks. We can calculate $\Gamma_{t \rightarrow \text { ow }}$ and it will be straightforward to extend this to the remaining two flavors.

$$
i \mu_{t \rightarrow 6 w}=\frac{t \rightarrow \sum_{p}^{b} / q}{w^{+}+k}=\frac{i e}{\sqrt{2} \sin \theta \omega} V_{t b} \bar{u}(q) r^{n}\left(\frac{1-r^{5}}{2}\right) u(p) \epsilon_{\mu}^{\theta}(k)
$$

We have to be a bit careful conjugating the spinor product with γ^{s},

$$
\left(\bar{u}(q) r^{m}\left(\frac{1-r^{s}}{2}\right) u(p)\right)^{\infty}=u^{+}(p) \underbrace{\left(\frac{1-r^{s}}{2}\right.}_{\substack{\text { Humitian, } \\ \text { sons dopers }}})\left(r^{m}\right)^{+} r^{o} u(q)
$$

As with QED, vex $\left(\gamma^{m}\right)^{+} r^{0}=r^{0} r^{m}$, but to move r^{0} past r^{s}, we have to anticomunte: $\left(\frac{1-r^{5}}{2}\right) r^{0}=r^{0}\left(\frac{1+r^{5}}{2}\right)$. These signs are tricks, and show up everywhere in electroweak calculations!

$$
\left.\left.\Rightarrow\langle | \mu\right|^{2}\right\rangle=\frac{1}{2} \frac{e^{2}\left|v_{t b}\right|^{2}}{8 \sin ^{2} \theta_{w}} \operatorname{Tr}\left[\left(q+m_{b}\right) r^{\mu}\left(1-r^{s}\right)\left(\phi+m_{t}\right)\left(1+\gamma^{5}\right) \gamma^{v}\right]\left(-\eta_{m v}+\frac{k_{m} k_{v}}{m_{v_{v}}}\right)
$$

where we used the result for sums over massive vector polarizations from last week. Since $n_{b}=4 \mathrm{GeV}$ but $m_{t}=173 \mathrm{GeV}, m_{b} \ll m_{t}$ and we can set $m_{b}=0$ in the trace.
There ore a couple more trace tricks involving γ^{s}.

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{5}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{2} \gamma^{v} \gamma^{5}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{\sim} \gamma^{v} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{m v \rho \sigma}
\end{aligned}
$$

these are also helpful for evaluating, polarized amplitudes using projectors instead of left- or cight-hared spines

It will be simpler to first aticommete one of the r^{s} factors:

$$
\begin{aligned}
\operatorname{Tr}[\underbrace{r r^{m}}_{a}\left(1-r^{s}\right)\left(p+m_{t}\right)\left(1+r^{5}\right) \gamma_{g}^{v}] & =\operatorname{Tr}\left[q \gamma^{m}\left(p+m_{+}\right)\left(1+r^{s}\right)^{2} r^{v}\right] \\
& =2 \operatorname{Tr}\left[A \gamma^{\mu}\left(p+m_{t}\right)\left(1+r^{5}\right) \gamma^{v}\right]
\end{aligned}
$$

So the fou traces we need ore

$$
\begin{aligned}
& \operatorname{Tr}\left[q \gamma^{\mu} p \gamma^{v}\right]=4\left(q^{\mu} p^{v}+q^{\nu} p^{\mu}-\eta^{\mu \nu} q \cdot p\right) \\
& \operatorname{Tr}\left[q \gamma^{\mu} m_{+} \gamma^{v}\right]=0 \\
& \operatorname{Tr}\left[q \gamma^{\mu} p \gamma^{s} \gamma^{v}\right]=4 i \epsilon^{\alpha \mu \beta v} q_{\alpha} p \beta
\end{aligned}
$$

$\operatorname{Tr}\left(\not a \gamma^{n} m_{t} \gamma^{5} \gamma^{v}\right)=0$ (artiommnte $r^{\text {s }}$ tree times and cycle back though trace, comes back to minus itself \Rightarrow must vanish)
But this is contracted into a term which is symucteric in $\mu \Leftrightarrow v$, so the totally antisymmetric term vanishes and we are left with

$$
\begin{aligned}
\left.\left.\langle | \mu\right|^{2}\right\rangle & =\frac{e^{2}\left|v_{t_{b}}\right|^{2}}{2 \sin ^{2} \theta_{\omega}}\left[q^{\mu} p^{v}+q^{v} p^{\mu}-\eta^{\mu v} \eta \cdot p\right]\left[-\eta_{\mu v}+\frac{k_{\mu} k_{v}}{m_{\omega}{ }^{2}}\right] \\
& =\frac{e^{2}\left|v_{+t}\right|^{2}}{2 \sin ^{2} \theta_{w}}\left(q \cdot p+\frac{2(q \cdot k)(p \cdot k)}{m_{\omega}^{2}}\right)
\end{aligned}
$$

Using $p=q+k$ and $q^{2} \approx 0, k^{2}=m_{w}{ }^{2}, p^{2}=m_{t}^{2}$, we have

$$
\begin{aligned}
& (p-q)^{2}=k^{2} \Rightarrow \quad q \cdot p=\frac{1}{2}\left(m_{t}^{2}-m_{w}{ }^{2}\right) \\
& p^{2}=(q+k)^{2} \Rightarrow q \cdot k=\frac{1}{2}\left(m_{t}{ }^{2}-m_{w}{ }^{2}\right) \\
& (p-k)^{2}=q^{2} \Rightarrow p \cdot k=\frac{1}{2}\left(m_{t}^{2}+m_{w}{ }^{2}\right) \\
& \left.\left.\Rightarrow\langle | m\right|^{2}\right\rangle=\frac{e^{2}\left|v_{t}\right|^{2}}{4 \sin ^{2} \theta_{w}} \frac{m_{t}^{4}}{m_{w}^{2}}\left(1-\frac{m_{w}{ }^{2}}{m_{t}^{2}}\right)\left(1+2 \frac{m_{w}{ }^{2}}{m_{t}^{2}}\right)
\end{aligned}
$$

Recall formula for 2 -bods decays: $\left.\left.\Gamma=\left.\frac{1}{2 m_{t}} \int d \pi_{2}\langle | M\right|^{2}\right\rangle=\left.\frac{|\vec{p}|}{8 \pi m_{t}^{2}}\langle | m\right|^{2}\right\rangle$ when $\left.\left.\langle | \mu\right|^{\prime}\right\rangle$ is isotopic as it is here. $|\vec{p}|$ is the outgoing nomatim of one of The decay products, since $|\vec{p}|=E_{6}$, energy conservation gives $m_{t}=E_{6}+\sqrt{E_{6}^{2}+m_{w}{ }^{2}}$, Solving, gives $E_{b}=|\vec{p}|=\frac{m_{t}^{2}-m_{m}^{2}}{2 m_{t}}$. Plugging in, $\Gamma=\frac{e^{2}\left|v_{t}\right|^{2}}{64 \pi \sin _{i n}^{2} \theta_{w}} \frac{m_{t}^{3}}{m_{w}{ }^{2}}\left(1-\frac{m_{w_{2}^{2}}^{2}}{m_{t}}\right)^{2}\left(1+2 \frac{m_{m}^{2}}{m_{t}^{2}}\right)$.

Now it's easy to sum over the other decay chancels:

$$
\Gamma_{t, \text { tot }}=\Gamma_{t \rightarrow 6 w}+\Gamma_{t \rightarrow s w}+\Gamma_{t \rightarrow d w}=\frac{e^{2}}{64 \pi \sin ^{2} \theta_{w}}\left(\left|v_{t s}\right|^{2}+\left|v_{t s}\right|^{2}+\left|v_{t d}\right|^{2}\right) \frac{m_{t}^{3}}{m_{w}^{2}}\left(1-\frac{m_{w}^{2}}{m_{t}^{2}}\right)^{2}\left(1+2 \frac{m_{w^{2}}^{2}}{n_{t}^{2}}\right)
$$

Plugging in experimatally-measured values.

$$
\begin{aligned}
& e=0.303, \sin ^{2} \theta_{w}=0.231,\left|v_{t_{6}}\right|=0.88,\left|v_{t s}\right|=0.039,\left|v_{t a}\right|=0.0084, \\
& m_{t}=173 \mathrm{GeV}, m_{w}=80.4 \mathrm{GeV} \\
& \Rightarrow r_{t, \text { tot }}=1.38 \mathrm{GeV}
\end{aligned}
$$

Experimentally, $\Gamma_{t, \text { tut }}=1.42_{-0.15}^{+0.19} \mathrm{GeV}$, so mates within error bars! Though, note the fact that both e and $\sin ^{2} \theta_{w}$ run with energy (like α_{s}), and here we used e at $Q^{2}=0$ and $\sin ^{2} \theta_{n}$ at $Q^{2}=m_{2}^{2}$. important for precision measurements. Reyudless, this is a lara width! $\tau_{\text {decay }}=\frac{1}{r}=4.8 \times 10^{-25} \mathrm{~s}$. Shorter lifetime than even stronly-interacting hadrons! The weak infection isn't reals that weak at high energies, and the top is so heavy that the decay phase space is huge: it decays before it hadronizer, so it's the closest thing to a free quark we can see in the SM.
(HW: more practice on 2 and Hogs decays, using same techniques)

Neutrino oscillations
While direct evidence of neutrino marses from kinematics does not yet exist, there is overwhelming evidence for neutrino masses from oscillation experiments. We have sea that neutrinos are produced through a w-boson vertex in flavor eigenstates: an electron is always accompanied by a $v_{e}, e t c$. Similarly, a process where a neutrino is converted into a charred lepton also preserves flavor, for example
 $e^{-}+v_{\mu} \rightarrow \mu^{-}+v_{e}$. Experiments have been performed
where only be are produced, yet (1) fewer electron events are defected tho expected, and (2) sometimes muon events are observed! This con occur if the mass eigenstztes (which determine the propagating stoles) are rotated from the flavor ergenstates (which determine the interactions); $\left|v_{i}\right\rangle=U\left|v_{l}\right\rangle$ when U is the PMNS matrix. The oscillation probabilities will then depend on the mass differences between different states, as we will now see.
For simplicity, let's restrict to the oscillation of only two neutrino species.

Let's consider an experiment where \bar{v}_{e} are produced from neutron decay, $n \rightarrow p+e^{-}+\bar{v}_{e}$, and defected a distance L ana, $Q F T$ tells us that θ for antineutrinos is the same as θ for neutrinos. The propagating cigenstates are plane waves, $\left|\bar{v}_{1,2}\right\rangle=e^{-i p_{1,2} x}$, so the electron neutrino component at spacetime point x is

$$
\left|\bar{v}_{e}(x)\right\rangle=e^{-i \rho_{1} \cdot x} \cos \theta\left|\bar{v}_{1}\right\rangle+e^{-i \rho_{2} \cdot x} \sin \theta\left|\bar{v}_{2}\right\rangle
$$

If we take $x=(T, 0,0, L)$ (reave at fire T and distance L), and use the fact that the average velocity of the nenk-ino wave packet is $\bar{v}=\frac{\left|\vec{p}_{1}+\vec{p}_{2}\right|}{E_{1}-E_{2}}$, we can set $T=\frac{L}{\bar{v}}=L\left(\frac{E_{1}-E_{2}}{\left|\vec{p}_{1} 2 \overrightarrow{p_{2}}\right|}\right)$.
For \vec{p}_{1} parallel to \vec{p}_{2}, this just rear $x=L\left(\frac{E_{1}, E_{2}}{\left|\vec{p}_{1}+\vec{p}_{2}\right|}, 0,0,1\right)=\frac{L}{\left|\vec{p}_{1}+\vec{p}_{2}\right|}\left(p_{1}+p_{2}\right)$ (proportional to sum of 4-vectors). Essentially what we are saying is that the neutrino ware packets begin to separate during p-oparation became they travel at slightly different speeds, but for sufficient s small L the, still over lop at a fired spacetime point.

This gives $\left|\bar{v}_{e}(L)\right\rangle=e^{-i \rho_{1} \cdot x}\left[\cos \theta\left|\bar{v}_{1}\right\rangle+e^{i\left(p_{1}-\rho_{2}\right) \cdot x} \sin \theta\left|\bar{v}_{2}\right\rangle\right]$

$$
\begin{aligned}
& =e^{-i p_{1} \times x}\left[\cos \theta\left|\bar{v}_{1}\right\rangle+e^{\left.\left.i \frac{L}{\mid p_{1} \bar{r}_{2}} \right\rvert\, p_{1}-p_{2}\right) \cdot\left(p_{1}+p_{2}\right)} \sin \theta\left|\bar{v}_{2}\right\rangle\right] \\
& =e^{-i p_{1} \times x}\left[\cos \theta\left|\bar{v}_{1}\right\rangle+\exp \left(i \frac{L}{\left|\vec{p}_{1}+\bar{p}_{2}\right|}\left(m_{1}^{2}-m_{2}^{2}\right)\right) \sin \theta\left|\bar{v}_{2}\right\rangle\right] \\
& \approx e^{-i p_{1} \times x}\left[\cos \theta\left|\bar{v}_{1}\right\rangle+\exp \left(i \frac{L}{2 E}\left(m_{1}^{2}-m_{2}^{2}\right)\right) \sin \theta\left|\bar{v}_{2}\right\rangle\right]
\end{aligned}
$$

In the last step we used the fact that in the kinematics of neutron decay, neutrinos are effectively, massless, so $\left|\overrightarrow{p_{1}}+\overrightarrow{p_{2}}\right| \approx E_{1}+E_{2}$ and $E_{1} \approx E_{2} \approx E$. (Experimentally, $E \sim$ MeV and $m_{1}, m_{2} \ll e V$). Note that we did not make the approximation $p_{1} \approx p_{2}$ since we wanted to keep ρ track of the vases m_{1} and m_{2} in the exponat, if $n_{1}=n_{2}=0$, the effect we are look ns for would vast. Let $\Delta m_{12}^{2}=m_{1}^{2}-m_{2}^{2}$ for future convenience.

Finally, we compute the overlap of this state with the flavor eigenstates:

$$
\begin{aligned}
& \left\langle\bar{v}_{e} \mid \bar{v}_{e}(L)\right\rangle=e^{-i P_{1} \cdot x}\left(\cos ^{2} \theta+\exp \left(i \frac{L}{2 E} \Delta m_{12}^{2}\right) \sin ^{2} \theta\right) \\
& \left\langle\bar{v}_{\mu} \mid \bar{v}_{e}(L)\right\rangle=e^{-i p_{1} \cdot x}(-\sin \theta \cos \theta)\left(1-\exp \left(i \frac{L}{2 E} \Delta m_{12}^{2}\right)\right)
\end{aligned}
$$

So the detection probabilities are (after some trig identities)

$$
\begin{aligned}
& P\left(\bar{v}_{e} \rightarrow \bar{v}_{e}\right)=\left|\left\langle\bar{v}_{e} \mid \bar{v}_{e}(L)\right\rangle\right|^{2}=1-\sin ^{2} 2 \theta \sin ^{2}\left(\frac{L}{4 E} \Delta m_{12}^{2}\right) \\
& P\left(\bar{v}_{e} \rightarrow \bar{v}_{\mu}\right)=\left|\left\langle\bar{v}_{m} \mid \bar{v}_{\mu}(L)\right\rangle\right|^{2}=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{L}{4 E} \Delta m_{12}^{2}\right)
\end{aligned}
$$

These probabilities sum to 1 (as the, should), and $P\left(\bar{v}_{e} \rightarrow \bar{v}_{m}\right)=0$ if $\Delta n_{12}^{2}=0$, so observation of \bar{v}_{μ} appearance or \bar{v}_{e} disappearance is eviduce for nonzero mass differences among neutrino species.
Numerically, independent of θ we can maximize the oscillation probability.

$$
\sin ^{2}\left(\frac{L}{4 E} \Delta m_{12}^{2}\right)=\sin ^{2}\left(1.27 \times 10^{3} \frac{\mathrm{Dmm}_{m_{2}^{2}}^{2}}{e_{V}^{2}} \frac{\mathrm{~L} / \mathrm{km}}{E / \mathrm{mev}}\right)
$$

So a detector 1 km awn is most sensitive to mass-squard differaces of $\Delta m_{12}^{2} \approx 10^{-3} \mathrm{eV}^{2}$. Drives design considerations for reatrivo experimats!

