GR as an effective field theol

Outline:
I. $G R$ from the bottom up - the unique Lagrangian for masks spln-2
II. GREFT; perinelion of mercury from dimensional analysis alone!
I. Massless spin-2 particles have 2 polarizations. A lorentzinvariant description requires such a particle to be embedded in the smallest lorentz rep-containing spin-2: $j_{1}=1$ and $j_{2}=1 \Rightarrow\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)=9$, symmetric traceless tensors $h_{\text {rv }}$. (Actually, more convenient to start with trace included and project out, so $(0,0) \oplus(1,1)$)
From these 10 components, we reed to get dour to 2 physical polarizations; this will strongly constrain the kinds of Lagraygions we can write down. It's easiest to see the algorithm by starting first with spin- 1 as a warm-up.
$A_{\mu}: 4$ conponets $\rightarrow 3$ (massive) $\rightarrow 2$ (massless)
Can split as q-rector into transverse and longitudinal components: $A_{\mu}(x)=A_{\mu}^{\top}(x)+\partial_{\mu} \pi(x)$ with $\partial^{-} A_{\mu}^{\top}=0$ (proof: $\partial^{\mu} A_{\mu}=\square \pi$, so given A_{μ}, solve for π)
This decomposition is not unique but it exists. essentially, defines Lorenz gauge for A^{\top}.

Let's pretend we don't know about gauge invariance and 2 wont to find a sensible Lagragion for A_{m}.
Most general 2 -derivative Lagrangian is (recall HW3):

$$
\mathcal{L}=a A^{\mu} \square A_{\mu}+6 A^{\mu} \partial_{\mu} \partial^{v} A_{\nu}+m^{2} A^{\mu} A_{\mu}
$$

(up to terms which vanish after integration by parts)
Plugging in $A=A^{\top}+\partial \pi$. After some integration by parts,

$$
\mathcal{L}=a A^{n T} \square A_{\mu}^{T}+n^{2}\left(A^{n T} A_{\mu}^{T}\right)-(a+b) \pi \square^{2} \pi-n^{2} \pi \square \pi
$$

Claim: the theory is sick if $a+6 \neq 0$.
compute π propagator in momentum space: $\square \rightarrow-k^{2}$, so

$$
\Pi_{\pi}=\frac{1}{2} \frac{1}{-(a+6) k^{4}+k^{2} m^{2}}=\frac{1}{2 m^{2}}\left[\frac{1}{k^{2}}-\frac{(a+6)}{(a+6) k^{2}-n^{2}}\right]
$$

$\Rightarrow \pi$ is actually two field, but one has a urong-sign propagator: a ghost. After quantization, leads to regative-norm states and non-uritury evolution: bad!
only way out is to have $a+b=0$, which con be written in the more suggestive way with $a=-6=\frac{1}{2}, n^{2} \rightarrow \frac{1}{2} n^{2}$

$$
L=-\frac{1}{4} F_{n v} F^{m v}+\frac{1}{2} m^{2} A_{\mu} A^{m}
$$

We can now restore a fictitious gauge symmetry (Stückelbey trick)

$$
\begin{aligned}
& A_{\mu}^{\top} \rightarrow A_{\mu}^{\top}+\partial_{m} \alpha, \pi \rightarrow \pi-\alpha \\
& \Rightarrow \mathcal{L}=-\frac{1}{4} F_{m}^{\top} F^{m}{ }^{\top}+\frac{1}{2} m^{2}\left(A_{\mu}^{\top}+\partial_{m} \pi\right)^{2}
\end{aligned}
$$

Only two propagation g nodes in $A_{\mu}{ }^{\top}$ (transverse + gauge inv.), the third (longitudinal) mode is introduced explicitly with π : mass tern for $A \Rightarrow$ kinetic term for π.

What about massless spin-1? If we try to set $m \rightarrow 0$, be kinetic term for π vanishes, but if A_{μ} couples to mack= $\alpha>A_{\mu} J^{n}$, then under gauge symmetry $\delta \alpha=\partial_{\mu} \pi J^{n}$ Bad things happen if interaction term is infinitely laser than kinetic term. Only way out: $\delta \alpha=0$ up to total derivatives $\Rightarrow \partial_{\mu} J^{n}=0$. Masskss spin-1 coupled to matte \Rightarrow conserved ${ }^{\prime}$.

OK, now to spin-2. Again, separate into transureset los.:

$$
h_{m v}=h_{r v}^{\top}+\partial_{\mu} \pi_{u}+\partial_{v} \pi_{m} w / \partial^{\mu} h_{\mu v}^{\top} \leftrightarrows \text { contains } 4 \text { d.o.f. }
$$

Also separate $\pi_{\mu}=\pi_{\mu}^{\top}+\partial_{\mu} \pi^{L} \mathrm{~m} / \partial^{n} \pi_{\mu}^{\top}=0$, doff.
Most geneal 2 -derivative quadratic Lagrangian is:

$$
\begin{aligned}
L= & a h_{\sim v} \square h^{\nu v}+b h_{m} \partial^{\mu} \partial^{\alpha} h_{\alpha}^{v}+c h D h+d h \partial^{\sim} \partial^{v} h_{\sim v} \\
& +n^{2}\left(x h_{w v} h^{\sim v}+y h^{2}\right) w / h=h_{\alpha}^{\alpha} .
\end{aligned}
$$

Same trick as before: after inserting teasserse decomposition, look for terms involving π^{L} : $h_{\text {nv }} \supset 2 \partial_{\mu} \partial_{v} \pi^{L}$, h $\supset 2 \square \pi^{L}$

$$
\begin{aligned}
m^{2}\left(x h_{\mu v} h^{\sim v}+y h^{2}\right) & \supset m^{2}\left(2 x \partial_{\wedge} \partial \nu \pi^{c} \partial^{\wedge} \partial^{v} \pi^{c}+2 y \square \pi^{c} D \pi^{c}\right) \\
& =4 m^{2}(x+y) \pi^{c} \square^{2} \pi^{c} \text { up to i.6-p. }
\end{aligned}
$$

Save problem same cure, need $x+y=0$ to avoid ghosts. Similar reasoning fixes relative coefficients of other terms:

$$
\mathcal{L}_{F P}=\frac{1}{2} h_{\sim v} \square h^{\sim v}-\frac{1}{2} h_{\sim v} \partial^{\mu} \partial^{\alpha} h_{\alpha}^{v}+h \partial^{\nu} \partial^{v} h_{\sim v}-\frac{1}{2} h \square h+\frac{1}{2} m^{2}\left(h_{\alpha 0} h^{v}-h^{2}\right) .
$$

Ferez-Punli lascangion for massive Spin-2. Stückelbeg trick: all terms but mass term are invt. under $h_{n v} h_{n v}+\partial_{\mu} \alpha_{v}+\partial_{v} \alpha_{n}$, let $\pi_{m} \rightarrow \pi_{n}-\alpha_{n}$ and we are left with 10-4-4 $=2$ doff's in $h_{i v}^{T}$ and $4-1=3$ deut's in π_{m}, leaving, $2+3=5$ for massless spin-2.

If we blindly set $n=0$, we get

$$
\alpha=\frac{1}{2} h_{\sim v} \square h^{\sim \nu}-\frac{1}{2} h_{\sim v} \partial^{\sim} \partial^{\alpha} h_{\alpha}^{v}+h \partial^{\nu} \partial^{v} h_{\sim v}-\frac{1}{2} L D h
$$

which is linearized vacuum Einstein-Hilbert, we are on the right track!, But mass term gave π_{n}^{T} a kinetic term. Need to make sure this disappears when has couples to other fields.

$$
L \supset h_{\sim v} T^{\sim v} \Rightarrow \delta L=\left(\partial_{v} \pi_{v}+\partial_{v} \pi_{N}\right) T^{\sim v} \Rightarrow \partial_{\sim} T^{\sim v}=0 .
$$

But this is not enough: consider $\Lambda_{1}=\frac{1}{2} h \phi$.
$\delta L_{1}=\partial^{\mu} \pi_{\mu} \phi$. If we let $\phi \rightarrow \phi+\pi_{\mu} \partial^{\mu} \phi$ ad modify α to

$$
L_{2}=\phi+\frac{1}{2} h \phi, \quad \delta L_{2} \partial \pi_{r} \partial^{2} \phi+\partial^{\wedge} \pi_{n} \phi=\partial^{n}\left(\pi_{2} \phi\right) \rightarrow 0 .
$$

But now here are extra terms:

$$
\delta L_{2}=\frac{1}{2} h \pi_{\sim} \partial^{n} \phi+\left(\partial^{n} \pi_{n}\right)\left(\pi_{v} \partial^{v} \phi\right)
$$

To cancel these, need to modify transformation of h, which means adding more terns $\alpha_{3}>h^{2} \phi, \ldots$
Miraculoush, this process converses!

$$
\phi \theta \Rightarrow \phi(x+\pi) \quad, \quad h_{N v} \rightarrow\left(\eta_{\alpha \mu}+\partial_{\alpha} \pi_{\mu}\right)\left(\eta_{\beta v}+\partial_{\beta} \pi_{\nu}\right)\left[\eta^{\alpha \beta}+h^{\alpha \beta}(x+\pi)\right]-\eta_{\mu v}
$$

In other words, a geneal coodinte trantornetion

$$
\Rightarrow \alpha=M_{\rho_{1}}^{2} \sqrt{-\operatorname{det}\left(\eta_{\omega}+\frac{1}{m_{p}} h_{m v}\right)}\left(R\left[\eta_{\mu \nu}+\frac{1}{m_{p}} h_{m v}\right]+\mathcal{L}_{m}[\phi]\right)
$$

(this is not trivial, but it, true)
$\Rightarrow G R$ is the wigue theory of a massless spin-2 particle which couples to natter.
The factors of $\frac{1}{m p i}$ we for dimensional consistency: $\left[h_{\sim v}\right]=1$, so this is just like the Chiral Lagrangian $F_{\pi}^{2}\left[D_{M} \exp \left(\frac{\pi}{F_{\pi}}\right)\right]^{2}$
II. $G R$ as an EFT.

Let; be schematic and ruthlessly suppress indices. Riemann tensor has two derivatives $R_{r v \alpha_{\beta}} \sim \partial_{\mu} \partial_{v} \exp \left(\frac{1}{m_{p l}} h_{\alpha_{s}}\right)$,

$$
\text { analogous to } U=\exp \left(\frac{i}{F_{7}} \sigma^{a} \pi^{a}\right)
$$

$$
L_{E H}=M_{P l}^{2} T r\left[R_{m j}\right] \Leftrightarrow \alpha_{(L i r a l}=F_{\pi}^{2} \operatorname{Tr}\left[D u^{+} D u\right]
$$

Each term has 2 deswatives and on infinite number of pouches of h.
As with chiral Lagrangian, should write down all terms consistat with symmetry (in this case, diff invorience):

$$
\begin{aligned}
& L \sim\left(\frac{1}{2} h \square h+\frac{1}{m_{p 1}} \square h^{3}+\cdots\right)+L_{i}\left(\frac{1}{m_{p 1}^{2}} h \square^{2} h+\frac{1}{m_{p_{1}}^{3}} h D^{2} h^{2}+\ldots\right)
\end{aligned}
$$

Just like Chiral Lagrangian, this theory intrinsically, contains higher-dimasion terns even with only 2 derivations: non-renormaliable. \Rightarrow theory must break down (and needs a UV completion) at $E \sim$ Mpi. But below that, perfectly predictive! Example. let's look at effects of $\frac{1}{m_{p l}} D h^{3}$ tern. We can use classical field perturbation theory:
equation of motion is $\square h \sim \frac{1}{m_{p_{1}}} D\left(h^{2}\right)-\frac{1}{m_{p_{1}}} T$, were T is the enerrs-monentum terror of a classical sow ce.
Lonest-ader solution is $L^{(0)}=\frac{-1}{m_{p 1}} \frac{1}{\square} T$; for $T=n \delta^{3}(r)$, this is just te Newtorim pierian $h^{(0)}=\frac{-m}{M_{p i}} \frac{1}{r}$.

Perturbative solution:

$$
\begin{aligned}
& \square\left(h^{(6)}+h^{(1)}\right)=-\frac{1}{m_{p_{1}}} T+\frac{1}{m_{p_{1}}} \square\left(h_{h^{(0)}}^{1}+h^{(1)}\right)^{2} \text { weer } h^{(1)}=\theta\left(\frac{1}{m_{p_{1}^{3}}^{3}}\right) \\
& \square h^{(1)}=\frac{1}{m_{p_{1}}} \square\left(\frac{1}{m_{p_{1}}^{2}} \frac{1}{D^{2}} T^{2}\right)+\theta\left(\frac{1}{m_{p_{1}^{4}}^{4}}\right) \\
& \Rightarrow h^{(1)}=\frac{1}{m_{p_{1}^{3}}^{3}} \frac{1}{1 D^{2}} T^{2} \sim \frac{1}{m_{p_{1}}}\left(\frac{n}{m_{p_{1}}} \frac{1}{\tau}\right)^{2}
\end{aligned}
$$

This is just the positia-spucce classical version of Feynman diagrams:

source

$$
h^{(1)}=
$$

$$
\begin{aligned}
& \text { Y } \\
& \text { iecestan }
\end{aligned}
$$

interaction
$\frac{h^{(1)}}{h^{(0)}} \sim \frac{1}{m_{11}} \frac{n}{m_{p 1}} \frac{1}{r}$. Take $n=M_{O}, r=$ dist. 6tur. Sun ad Mercury.
$\frac{h^{(1)}}{h^{(0)}} \sim \frac{M_{0}}{m_{P L}} \frac{1}{m_{p l} r} \sim 10^{38} \frac{1}{10^{45}} \sim 10^{-7}$, which is he perihelion shiffl

$$
\frac{43^{\prime \prime} / \text { cautery }}{2 \pi / 88 \mathrm{dm}}=0.8 \times 10^{-7}
$$

What about higher-order terms L_{i} ? Con solve exactly w/L, ad L_{2};

$$
h(r)=\frac{m}{m_{p 1}}\left[\frac{1}{r}-128 \pi^{2} \frac{L_{1}+L_{2}}{m_{p 1}{ }^{2}} \delta^{3}(r)+\ldots\right] \text {. Short rage } \Rightarrow \text { unobservace. }
$$

There are also genuine quantum effects:
corrects graviton propagator. hat like in nen-abelion sarge theory, get a $\left(n\left(-\rho^{2}\right)\right.$ contribution which can it be canceled by counterterms. Fowir-transform: $\ln \left(-p^{2}\right) \rightarrow \frac{1}{r^{3}}$ (c.A. Uchling patten is $Q \in 0$)

$$
h(r) \sim \frac{m}{m_{p l}} \pm\left[1-\frac{m}{m_{p l}^{2} r^{2}}-\frac{127}{30 \pi^{2}} \frac{1}{m_{p 1}^{2} \tau^{2}}-128 \pi^{2} \frac{L_{1}+L_{2}}{m_{p l}^{2}} \delta^{3}(\lambda)+\ldots\right]
$$

