Introduction to supersummetry
What is supersymuetry? In increasing oder of speculativeness,

1. a gerentization of the Poincare algebra, in fact the unique extension of spacetime symmetries
2. A playground for to models of fiecel theory ("super-yay-mills is the harmonic oscillator of Q FT")
3. a way to ensure the vacuum enemy cancels
4. A doubling of the particle content of the sm that could solve the hierarchy problem and provide a DM candilate.

Will focus mostly on (1)... (4) was ven popular 20 yeas ago, but zen experimental eviduce so for, and mach of the motivation has been killed G the LAC.

Supersymetery exchanges bosons and fermions.

$$
Q \mid \text { boson }\rangle=\mid \text { fermion }\rangle, Q \mid \text { fermion }\rangle=\text { boson } \text {. }
$$

Unirke eng Poincare, were $P_{n}=i \partial_{\mu}$ is the infinitesimal geceator of translations, Q is not an infinitesimal symmetry, in the o-linery sere: it is itzelt a spinor! So its algebra will obey articommatation relations

Sclenctically, we can extend Poincare as follows:
$\left\{Q, Q^{+}\right\}=P \sim \& Q$ is "square root of a translation"

$$
\begin{aligned}
& \{Q, Q\}=\left\{Q^{+}, Q^{+}\right\}=0 \\
& {\left[P^{+}, Q\right]=\left[P^{\sim}, Q^{+}\right]=0}
\end{aligned}
$$

win just Poincaré, representations were classified by P^{2} (ad w^{2}). In susy, reps, are supermultiplets win equal number of bosons and fermions (and same mas and gauge chases) To prove this, consider the operator $\theta=(-1)^{2 s}$ where s is the spin operator. $\theta|B\rangle=|B\rangle$ and $\theta|F\rangle=-|F\rangle$.

Therefore, $\theta Q|B\rangle=\theta|F\rangle=-|F\rangle$, fut $Q \theta|B\rangle=Q|B\rangle=|F\rangle$, So $\{\theta, Q\}=0$ and likewise $\left\{\theta, Q^{+}\right\}=0$. Now let li> be all states where eigaval. of Pm^{m},

$$
\begin{aligned}
\sum_{i}\left\langle\left.\left\langle_{i}\right| \theta P^{\sim}\right|_{i}\right\rangle= & \sum_{i}\langle i| \theta Q Q^{+}|i\rangle \\
= & \left.\left.\sum_{i}\langle i| \theta Q^{+} Q\right|_{i}\right\rangle \\
& \left.\sum_{i}\left\langle_{i}\right| \theta Q Q^{+}|i\rangle+\left.\sum_{j,}\left\langle_{i}\right| \theta Q^{+}|j\rangle\langle j| Q\right|_{i}\right\rangle \\
& =-\sum_{j}\langle j| \theta Q^{+}|j\rangle \\
= & 0
\end{aligned}
$$

But $\sum_{i}\left\langle i \mid \theta p^{\sim} \|_{i}\right\rangle=p^{n} \operatorname{Tr}\left[(-1)^{2 s}\right]=n_{b}-n_{F}$, so $n_{\beta}=n_{F}$
Every boson has a fermionic partner of the same mas and charge! (Not our miverse.)

Simplest example of a supernultoplet is a single West fermion $\left(n_{F}=2\right)$ and a complex scalar $\left(n_{\beta}=2\right)$.

$$
\mathcal{L}_{w 2}=\partial^{n} \phi^{\Delta} \partial_{n} \phi+i \psi^{+} \bar{\sigma}^{n} \partial_{\sim} \psi
$$

This is the (massless, non-interactios) Wess-2umino model. Looks kind of boring... but what if we propose a transformation $\delta \phi=\epsilon \psi, \delta \phi^{\otimes}=\epsilon^{+} \psi^{+}$?
Here, ϵ is an infinitesimal fermionic parameter, and $\epsilon \psi$ vans $\epsilon^{\alpha \beta} \epsilon_{\alpha} \psi_{\beta}$ (the loreatz-invt. Spinet contraction).
Note $a l$ so $[\epsilon]=-\frac{1}{2}$. We have $\delta \alpha_{\text {scalar }}=\epsilon \partial^{n} \psi \partial_{\mu} \phi^{\otimes}+\epsilon^{+} \partial \sim \psi^{+} \partial_{\mu} \phi$.
If we wat $\mathcal{L} w_{2}$ to be invariant up to a total derivatives we need $\delta \psi$ to contain $\partial_{\mu} \phi$. Try $\delta \psi_{\alpha}=i\left(\sigma^{n} \epsilon^{+}\right)_{\alpha} \partial_{\mu} \phi$.

$$
\Rightarrow \delta \mathcal{L}_{\text {fermion }}=\epsilon \sigma^{\wedge} \bar{\sigma}^{v} \partial_{\nu} \psi \partial_{\mu} \phi^{\lambda}-\psi^{+} \bar{\sigma}^{v} \sigma^{2} \epsilon^{+} \partial_{\mu} \partial_{\nu} \phi
$$

After some Pauli matrix identities we get

$$
\delta L_{\text {fanion }}=-\epsilon \partial^{n} \psi \partial_{\mu} \varphi^{s}-\epsilon^{+} \partial^{n} \psi^{+} \partial_{\mu} \psi_{T} \partial_{\sim}(\text { stuff })
$$

so $\delta \mathcal{L}=0$ up to total derivatives.
Still need to check hat the susy abeba is closed; two transformations should give another.

$$
\left\{\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right\} \phi \equiv \delta_{\epsilon_{1}}\left(\delta_{\epsilon_{2}} \phi\right)-\delta_{\epsilon_{2}}\left(\delta_{\epsilon_{1}} \varphi\right)=i\left(\epsilon_{1} \sigma^{n} \epsilon_{2}^{+}-\epsilon_{2} \sigma^{n} \epsilon_{1}^{+}\right) d_{\mu}
$$

$\{Q, Q\}$ as antipater!

More subtle for ψ^{\prime}.

$$
\left\{\delta_{\epsilon_{1}}, \delta_{\epsilon_{\nu}}\right) \psi_{\alpha}=i\left(\epsilon_{1} \sigma^{n} \epsilon_{2}^{+}-\epsilon_{2} \sigma^{2} \epsilon_{1}^{+}\right) \partial_{\mu} \psi_{\alpha}-i \epsilon_{1_{\alpha}} \epsilon_{\nu}^{+} \sigma^{\sim} \partial_{\sim} \psi+i \epsilon_{2 \alpha} \epsilon_{1}^{+} \sigma^{2} \partial_{\mu} \psi
$$

Only, vanish if equations of notion are satisfied!

$$
\bar{\sigma}^{2} \partial_{\sim} \psi=0
$$

What's going on? On-skell, ψ has 2 d.o.f., which retakes 2 did.f.in φ. But off-skll, ψ is a 2 -component complex field with 4 doff., and weal eqn. projects out half. Can fix this with a Lagrange multoplier. Add to the action $\mathcal{L}_{\text {act }}=F^{A} F$ when F is a complex auxilian field. E.O.M. is $F=0$, so F does sowing. But if we define $\delta \psi_{\alpha} \rightarrow \delta \psi_{\alpha}+\epsilon_{\alpha} F$ along un $\delta F=i \epsilon^{+} \sigma^{2} \partial_{\sim}+$, then $\delta \alpha=0$ up to $\partial_{2}(\ldots)$ and $\left\{\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right\}=i\left(\epsilon_{1} \sigma^{2} \epsilon_{2}^{+}-\epsilon_{2} \sigma^{2} \epsilon_{1}^{\top}\right)$ un all $\mathrm{Fich}_{\mathrm{c}} \mathrm{d}, \mathrm{X}=\boldsymbol{\theta}, \mathscr{P}^{\rightarrow}, t, \psi^{+}, F, F^{*}$. F has restored d.o.f. matching off-stell with 2 more bosonic d.o.f. Can now restore indices:

$$
\left\{Q_{\alpha}, Q_{\dot{\alpha}}^{+}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{n} P_{n}
$$

A taste of Susy phen:
The mininal supeasmmetric SM (MSSM) contains susy partners for all $S M$ fillds, ρ lus an extra Higgs doublet. Instead of H and \tilde{H}, we have H_{d} and H_{n} which sepatele, give mass to up and doun quarks.
Can letine a new discrete synmety called R-pasity, $P_{R}=(-1)^{3(B-L)+2 s} \cdot P_{R}=+1$ for all Ficlds in $S M$, but $P_{R}=-1$ for SUSy partres, so if this is a sumucts of the MSSM Lagasoion te following are true:

- Susy patitucs on aluans pair-poleced
- Liglest susy partocic is stable: if reutial, con be DM
- forbils lcading contriontions to dim-6 opeator $\rho \rightarrow e^{+} \pi^{\circ}$.

Note that we don't see a boson w/charne - 1 ard nass silkev! so if susy exists, it mast be boken, making susy partners heavic. Haven't seen any jet, so Msusi $\gtrsim 1$ Tev. Finall, susy can be exteded from a global to a local symmetry \Rightarrow supergravity. Multoplet containing the graviton has a ferrinic portner $\psi_{\mu_{\alpha}}$, the spin- $\frac{3}{2}$ Gravitino. Could also be DM but hard not to nake too nany of trem on early univere

