Relativity review

Units in this class are "natural units"!
$$\pi = c = 1$$
. In the SI
system of units, there are three dimensionful quantities
(mass length, time), but relativity mixes length and time, and QM
mixes energy and time from $E = \pi w$, so natura (units make these
conversions easy by having only one dimensionful quantity,
mass (or energy, by $E = mc^{2}$). Dimensions will be computed in
powers of mass, and denoted $(---) = d$.
 $Ex. [m] = 1$
 $[E] = [mc^{2}] = [m] = 1$
 $[T] = [\frac{\pi}{E}] = [E^{-1}] = -1$
 $[L] = [cT] = (T] = -1$

Two useful conversion factors to get back to SI: $\frac{1}{Nc} = 6.58 \times 10^{-12} \text{ MeV} \cdot \text{Fm}$ Recall that Lorentz transformations are the set of linear coordinate transformations that leave the spacetime metric invariant. In this course, metric is $\eta_{NV} = \eta^{-1} = \text{diag}(1, -1, -1, -1)$ So timelike 4-vectors have positive invariant mass. A Lorentz "boost" along the z-axis by velocity $|\mathcal{B}| < 1$ can be written as a metrix $\Lambda = \begin{pmatrix} Y & 0 & 0 & YB \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Y \end{pmatrix}$ where $Y = \frac{1}{\sqrt{1-B^{-1}}}$ To this class is transformations will be active so written as

In this class, all transformations will be active, so acting on the 4-momentum of a particle at rest, $p^{m=}(m, 0, 0, 0)$, gives $p^{n} \rightarrow (Ym, 0, 0, YBm)$. If B>O, p^{n} is boosted to have $p^{2} > 0$. We can extract a couple useful facts from this Calculation.

- · E=Ym so to find the borentz factor for a massive particle, just divide its energy sy its mass.
- · |p|=YBM, so B= Ip/ In this course we will almost never care about B, and will use Y exclusively.

Plcall $p^2 \equiv p \cdot p \equiv (p^0)^2 - (p^1)^2 - (p^2)^2$ is invariant; same in any frame. Comparing rest-frame $p^2 \equiv (m, \overline{0})$ to some other frame $p^{m'} \equiv (E, \overline{p})$ gives $[\overline{E^2} \equiv |\overline{p}|^2 + m^2]$ which we will use all the time.

Massless particles (e.g. photons) are described by lightlike Arvectors with $p^{T}=0$, thus $E = [\vec{p}]$ (and $\beta = 1$).

An easy way to immediately see that a quantity is Lorentz-
invariant is to use index notation. A Lorentz transformation

$$M$$
 is a $q \times q$ metrix with entries M^{m}_{u} , $m, u = 0, 1, x, 3$
 $M^{u}_{u} = 1 \times 3$
 M^{u

Can raise and lower indices (i.e. convert covariant to contravariant) by using the metric: $V^{m} \equiv m^{mv}V_{v}$, $W_{n} \equiv m^{mv}W'$. This is nice because we never have to keep track of transposes explicitly.

2

Locate transformations are defined to be trace that
$$\frac{3}{7}$$

preserve the metric: $\frac{1}{7} \frac{1}{7} = \Lambda_{0}^{n} \Lambda_{0}^{n} \frac{1}{7} \frac{1}{7} \frac{1}{7}$ or $\frac{1}{7} = \Lambda_{1}^{n} \eta_{1}^{n}$
This implies that any quantity unit all indices contracted
is a Lorentz Scalar, i.e. invariant.
Example: $V_{n}W^{n} \equiv \eta_{nv}V^{n}W^{n} \equiv WqV = VqW$
Perform Lorentz transformation Λ on both V and W :
 $WqV \rightarrow (W\Lambda^{T}) q(\Lambda V) = W(\Lambda^{T} q\Lambda)V = Wq^{-1}V = WqV$
Transposes and inverses are related by the metric presention equ:
 $\Lambda^{T}q\Lambda = \eta => (q\Lambda^{T}q)\Lambda = \eta = 1$, so $\Lambda^{-1} = q\Lambda^{T}q$
With indices, $(\Lambda^{-1})_{v}^{n} = \eta_{nv}q^{n}\Lambda_{0}^{n}$, but by the index raising rloweng
(Mes, the RHS gets the same symbol Λ_{v} , so we don't have to
keep track of inverses either.
To be clear, this is just notational simplicity: if we wanted
to evaluate components of the inverse transformation for our
boost we could do so explicitly: $(\Lambda^{-1})_{v}^{n} = \eta_{nq}q^{n}\Lambda_{0}^{n} = \gamma_{nq}q^{n}\Lambda_{0}^{n} = -YR$.
But our rotation means we don't have to distinguish between eq.
 Λ_{v} and Λ_{v}^{n} as some texts do.
Check Lorentz invariance with index notation:
 $V^{m}W_{n} \rightarrow \Lambda_{v}^{m}N_{v}^{n}T_{m}$
 $S_{pr}^{m} \rightarrow \Lambda_{p}^{m}\Lambda_{r}^{n}S_{m}^{m}$
With index notation, we know that a quantity like
 $T_{m}T_{v}^{m}\Lambda_{m}^{n}\Lambda_{v}^{n}T_{w}$

One last piece of notation: $\partial_{n} \equiv \frac{\partial}{\partial x^{m}} \equiv (\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3})$ is "naturally" a covariant vector, While x^{m} is "naturally" contravariants $\partial^{2} \partial_{n} \equiv g^{m} \partial_{n} \partial_{v} = (\partial_{0})^{2} - (\partial_{1})^{2} - (\partial_{3})^{2}$ is called the d'Alembertian and is often denoted \square .