NOTE: $\omega_{\mu\nu}$ is only antisymmetric with both its indices lowered! From now on in the course index heights come with important minus signs.

A general infinitesimal Lorentz transformation can be written

$$X = \frac{-i}{2} \omega_{\mu\nu} M^{\mu\nu} = -i (\omega_0, M^{00} + \omega_0, M^{03} + \omega_3, M^{03} + \omega_3, M^{33}),$$

where

$$\omega_{\mu\nu} = \begin{pmatrix} 0 & \beta_1 & \beta_2 & \beta_3 \\ -\beta_1 & 0 & \theta_3 & -\theta_2 \\ -\beta_2 & -\theta_3 & 0 & \theta_1 \\ -\beta_3 & \theta_2 & -\theta_1 & 0 \end{pmatrix}, \quad M^{\mu\nu} = \begin{pmatrix} 0 & -K_1 & -K_2 & -K_3 \\ K_1 & 0 & J_3 & -J_2 \\ K_2 & -J_3 & 0 & J_1 \\ K_3 & J_2 & -J_1 & 0 \end{pmatrix},$$

($\omega_0 = \beta_0, \ \omega_{ij} = E_{ijk} \theta_k$)

\(\beta = (\beta_0, \beta_1, \beta_2, \beta_3)\) is an infinitesimal boost vector, and \(\theta = (\theta_0, \theta_1, \theta_2)\) is an infinitesimal rotation about the axis \(\theta\). This lets us write an infinitesimal transformation in a way where there are no minus sign ambiguities. \(\omega_{\mu\nu} = \beta_0, \ \omega_{\mu\nu} = E_{ijk} \theta_k\)

\[X = -i \theta \cdot J + i \beta \cdot K\]

Note minus sign compared to Schwartz!

Our convention is the usual RH rule for rotations.

A convenient way to write the entries of \(M^{\mu\nu}\), each of which is a 4x4 matrix, is \((M^{\mu\nu})^x_y = i (\gamma^x \delta^y_h - \gamma^y \delta^x_h)\) where \(x, y\) label the matrix indices.

\[\begin{align*}
\gamma^0 &= i (\gamma^0 \delta^0_h - \gamma^h \delta^0_0) \\
&\quad + 1 \text{ if } x=0, y=1 \quad \quad + 1 \text{ if } x=1, y=0
\end{align*}\]

Using this form we can compute the commutator for all generators:

$$[M^{\mu\nu}, M^{\rho\sigma}]^x_y = (M^{\mu\nu})^x_y (M^{\rho\sigma})^y_h - (M^{\rho\sigma})^y_h (M^{\mu\nu})^x_y$$

\[
\begin{align*}
&= - (\gamma^x \delta^0_h - \gamma^0 \delta^x_h)(\gamma^0 \delta^y_h - \gamma^y \delta^0_0) + (\gamma^y \delta^0_h - \gamma^0 \delta^y_h)(\gamma^x \delta^h_0 - \gamma^h \delta^x_0) \\
&= -\gamma^x \gamma^0 \delta^0_h + \gamma^y \gamma^0 \delta^x_h + (3 \text{ similar}) \\
&= -i \gamma^x \gamma^0 (M^{\rho\sigma})^y_h + (3 \text{ similar}) \\
&= -i \gamma^x \gamma^0 (M^{\rho\sigma})^y_h + (3 \text{ similar}) \\
&\Rightarrow |M^{\mu\nu}, M^{\rho\sigma}| = i (\gamma^x \gamma^0 M^{\rho\sigma} + \gamma^x \gamma^y M^{\rho\sigma} - \gamma^y \gamma^0 M^{\rho\sigma} - \gamma^y \gamma^y M^{\rho\sigma})
\end{align*}
\]
Now let's include transformations to get the whole Poincare group.

\[x^\mu \rightarrow x^\mu + \Lambda^\mu \] can be implemented as a matrix with one extra entry:

\[
\begin{pmatrix}
1 & x^0 & x^1 & x^2 & x^3 \\
0 & 1 & x^1 & x^2 & x^3 \\
0 & 0 & 1 & x^2 & x^3 \\
0 & 0 & 0 & 1 & x^3
\end{pmatrix}
\begin{pmatrix}
x^0 \\
x^1 \\
x^2 \\
x^3
\end{pmatrix}
=
\begin{pmatrix}
x^0 + \Lambda^0 \\
x^1 + \Lambda^1 \\
x^2 + \Lambda^2 \\
x^3 + \Lambda^3
\end{pmatrix}
\] (this is called an affine transformation)

So a general Poincare element (Lorentz + translation) can be represented as:

\[(\lambda, \Lambda) = \begin{pmatrix} 1 & i & \lambda_1 & \lambda_2 & \lambda_3 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \]

\[(\lambda_1, \Lambda_1), (\lambda_2, \Lambda_2) = \begin{pmatrix} \lambda_1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 + \lambda_2 & \Lambda_1 + \Lambda_2 \\ 0 & 1 \end{pmatrix} \]

Infinite translation is still a vector, let's call it \(P^\mu \).

\[P^\mu = -i \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad P^\mu = +i \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \]

Note signs! In other words, \((P^\mu)^\alpha = -i \sigma^\alpha \) where \(\alpha \) is the row index of the 5x5 matrix.

\[[P^\mu, P^\nu] = 0 \quad [HW]\]

One last commutation relation to compute:

\[[M^{\mu \nu}, P^\alpha]^\alpha = \begin{pmatrix} (m^{\mu \nu})^\alpha & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & i (P^\mu)^\alpha \\ 0 & i (P^\nu)^\alpha \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & (m^{\mu \nu})^\alpha (P^\mu)^\alpha \\ 0 & (m^{\mu \nu})^\alpha (P^\nu)^\alpha \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \]

\[P^\alpha \text{ transforms like a 4-vector, as it should} \]

So the commutator is a pure translation (Lorentz part is 0).
Compute the coefficient:

\[i(\gamma^\mu \gamma^\alpha \gamma^\beta - \gamma^\mu \gamma^\alpha \gamma^\beta)(-i\eta^{\alpha\beta}) = i(\gamma^\nu (-i\eta^{\alpha\beta}) - \gamma^{\nu\beta}(-i\gamma^\nu)) \]

\[= i(\gamma^\nu \gamma^\nu - \gamma^{\nu\nu} \gamma^\nu) \]

\[\Rightarrow [M^{\mu\nu}, \gamma^{\alpha\beta}] = i(\gamma^\nu \gamma^\nu - \gamma^{\nu\nu} \gamma^\nu) \]

We now have the complete commutation relations for the Lie algebra of the Poincaré group:

\[
\begin{align*}
[M^{\mu\nu}, M^{\rho\sigma}] &= i(\gamma^{\nu\rho} M^{\mu\sigma} + \gamma^{\nu\sigma} M^{\mu\rho} - \gamma^{\rho\sigma} M^{\mu\nu} - \gamma^{\mu\nu} M^{\rho\sigma}) \\
[M^{\mu\nu}, P^{\rho}] &= i(\gamma^{\nu\rho} P^{\mu} - \gamma^{\rho\mu} P^{\nu}) \\
[P^{\mu}, P^{\nu}] &= 0
\end{align*}
\]

Note that while we derived these using a particular 5×5 representation of the Lie algebra, they hold in general as abstract operator relations. Just like with the Lorentz group, we will now systematically construct the representations of this group.

Casimir operators

Now that we have the algebra, what can we do with it? If we find an object that commutes with all generators, a theorem from math tells us it must be proportional to the identity operator on any irreducible representation; this is called a Casimir operator.

Irreducible \leftrightarrow can't write as block-diagonal like

\[
\begin{pmatrix}
R_1 & 0 \\
0 & R_n
\end{pmatrix}
\]
Here's one Casimir operator: \(p^2 = p^\mu p_\mu \). Proof:

\[
[p^\mu, p^\nu] = 0 \quad \text{since all } p\text{'s commute.}
\]

\[
[p^\mu, M^{\mu\nu}] = p^\nu [p_\nu, M^{\mu\nu}] + [p^\mu, M^{\mu\nu}] p_\nu \quad \text{(using } [A;B,C] = A[B,C] + [A,C]B) \]

\[
= p^\nu (-i(\gamma^\nu p^\mu - \gamma^\mu p^\nu)) - i(\gamma^\nu p^\mu - \gamma^\mu p^\nu) p_\nu \]

\[
= i(p^\nu p^\mu - p^\mu p^\nu) + i(p^\mu p^\nu - p^\nu p^\mu) = 0
\]

(which had to be true: \(M^{\mu\nu} \) is antisymmetric in \(\mu, \nu \), and since \([M, p] \propto p \), could only have a commutator like \(pp \) which is symmetric in \(\mu, \nu \))

Thus on an irreducible rep., \(p^2 \) acts as a constant times the identity operator. Let's call the constant \(m^2 \); we will soon identify it with the physical (squared) mass of a particle.

The Poincaré algebra has a second Casimir, but it's a bit less transparent. Let's define

\[
W_\sigma = \frac{1}{2} \epsilon_{\mu\nu\rho} M^{\mu\nu} p^\rho
\]

(Pauli-Lubanski: pseudovector)

\(\epsilon_{\mu\nu\rho} \) is the totally antisymmetric tensor with \(\epsilon_{0123} = -1 \).

We will see that \(W \) is related to a particle's spin. First, some useful observations:

- \(W \) is orthogonal to \(p \): \(W_\sigma p^\sigma \propto \epsilon_{\mu\nu\rho} p^\mu p^\nu p^\rho = 0 \) by antisymmetry of \(\epsilon \).

- \(W \) and \(p \) commute, so we can label reps. by both their eigenvals.

\[
[W_\sigma, p^\nu] = \frac{1}{2} \epsilon_{\mu\nu\rho} [M^{\mu\nu}, p^\rho] = \frac{1}{2} \epsilon_{\mu\nu\rho} \left(M^{\mu\nu}[\rho^\rho, p^\rho] + [M^{\mu\nu}, p^\rho] p^\rho \right)
\]

\[
= \frac{1}{2} \epsilon_{\mu\nu\rho} (\gamma^{\nu} p^{\mu} - \gamma^{\mu} p^{\nu}) p^\rho
\]

\(= 0 \), again by antisymmetry.
Now, consider some state $|k^+\rangle$ which is an eigenvector of p^m w/eigenvalue k^m. We will see next week that such states describe particles of definite momentum. p^+ acts as $k^+k^m = m^\pm$, so indeed, for a massive particle, p^+ acts as the identity on all states $|k^+\rangle$ related by Lorentz transformations.

But to a frame where $k^+ = (m, 0, 0, 0)$, so $p^+ |k^+\rangle = m |k^+\rangle$, $p^|k^+\rangle = 0$. Then $W(|k^+\rangle) = \frac{1}{2} E_{ijk} M^{ik} p^j |k^+\rangle = m (\frac{1}{2} E_{ijk} M^{ik}) |k^+\rangle = -m J^+ |k^+\rangle$

As you recall from QM, $J^\pm \equiv J^x \pm J^y = s(s+1)$ is indeed a multiple of the identity with coefficient given by the particle’s spin s, so the same should hold true for $W^\pm = -(\bar{w} \cdot \bar{w}) = -m^2 J^\pm J^\mp$.

Note: this only works if $m \geq 0$!! Will come back to $m = 0$.

Claim: $W^\pm W^\mp$ is a Casimir, i.e. commutes with all p^m and M^{mn}

Proof: we have already shown $[W, p] = 0$, so clearly $[W^\pm, p] = 0$.

But W^\mp is Lorentz-invariant (no free indices), so the action of an infinitesimal Lorentz transformation must vanish: $[W^\mp, M^{mn}] = 0$.

If this argument is too slick for you, for HW you will check explicitly that $[W^\pm, M^{mn}] = 0$ using the Poincaré algebra.

Physical interpretation of Casimirs:

Recall from the second lecture that $J^+ = \frac{J^x + i J^y}{2}$, $J^- = \frac{J^x - i J^y}{2}$

$\Rightarrow J = J^+ + J^-$

Reps of Lorentz group are labeled by half-integer spins j_1, j_2, so this is like adding spins in QM! J can have spins $j = j_1 - j_2, j_1 - j_2 + 1, \ldots, j_1 + j_2$, with $J^2 = j(j+1)$
But W^2 is a Casimir operator so it only takes one value on each irreducible representation, which one?

Some easy cases: $(0, 0)$ rep has $j_1 = j_2 = 0$ so $j = 0$: these are spin-0 particles (scalars)

$(\frac{1}{2}, 0)$ or $(0, \frac{1}{2})$ reps have $j_1 = \frac{1}{2}$ and $j_2 = 0$ or vice-versa: again, only one possible value of j, $j = \frac{1}{2}$, so these are spin-$\frac{1}{2}$ particles

More interesting:

$(\frac{1}{2}, \frac{1}{2})$ rep has $j_1 = j_2 = \frac{1}{2}$, so $j = 1$ or 0. In QFT, this will describe spin-1 particles, but we will need an additional constraint in the equations of motion to project out the $j = 0$ component.

What about massless particles? $p^2 = 0$, so we can't go to a frame where $K^0 = (m, 0, 0, 0)$. The best we can do is to take $k^0 = k$ and pick a direction since $|k^\mu| = k^0$; take $k^\mu = (k, 0, 0, k)$.

Can show that W generates the set of transformations which leave k^μ fixed (this is known as the little group). This is clear for $m \neq 0$ since J generates rotations which leave the zeroth component alone and don't affect $k^\mu = 0$.

For $m = 0$, things are more subtle. Clearly rotations in the xy-plane preserve $k^z = k_3$, so $W_1 |k\rangle = W_3 |k\rangle = 0$. But there is actually a combination of a boost and a rotation that also preserves k^μ. Note that $W_\mu p^\mu = 0 \Rightarrow k(W_0 + W_3) |k\rangle = 0$, so $W_0 |k\rangle = -W_3 |k\rangle$. Can also show $[W_0, W_3] |k\rangle = 0$. [HW]

Therefore, $W^2 |k\rangle = (W_0)^2 - (W_3)^2 |k\rangle = 0$, so eigenvalues of W^2 alone aren't enough to tell us about spin.
If we raise an index, $\omega^0\ell = W^3/k$, so $\omega^{-1}\ell = \lambda \rho^{-1}\ell$ for some λ.

Consider $W_0 = \frac{1}{2} \epsilon_{i,j,k} M^{ij} \rho^k = -\frac{1}{2} \epsilon_{0,i,j,k} M^{ij} \rho^k = + \vec{\rho} \cdot \vec{p} = \lambda \rho_0$.

Since $\rho_0\ell = |\vec{p}|\ell$ for massless particles, solve for λ:

$\lambda = \frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} = \vec{J} \cdot \vec{p}$. This is a new spin quantum number called helicity: projection of spin along direction of motion.

It is lorentz-invariant for massless particles! $\vec{J} \cdot \vec{p} = J_3$ is quantized in half-integers, therefore so is λ. Examples:

- $(0,0)$ rep: $J_3 = 0$ so $\lambda = 0 \Rightarrow \text{spin}-0$.
- $(\frac{1}{2}, 0)$ or $(0, \frac{1}{2})$ reps: $J_3 = \frac{1}{2} \sigma$ so $J_3 = \pm \frac{1}{2}$, and $\lambda = \pm \frac{1}{2}$. $\lambda > 0$ means “spin-up along direction of motion,” which we call right-handed. For $m \geq 0$, this property is invariant under boosts.

- $(\frac{1}{2}, \frac{1}{2})$ rep: $\lambda = -1$, 0 (x2), or $+1 \Rightarrow \text{spin}-1$, but $\lambda = 0$ states are unphysical.

Compared to $m > 0$, there is an extra $\lambda = 0$ state which we will have to get rid of with gauge invariance.