We are Rus left with two independent polarization vectors. in a frame where $P_{\mu}=(E, 0,0, E)$, (by are

$$
\begin{aligned}
& \epsilon_{m}^{(1)}=(0,1,0,0) \quad\{\text { linear polarization } \\
& \epsilon_{\mu}^{(2)}=(0,0,1,0) \\
& \text { or } \\
& \epsilon_{\mu}^{(L)}=\frac{1}{\sqrt{2}}(0,1,-i, 0) \quad \text { \} circular polarization } \\
& \epsilon_{m}^{(R)}=\frac{1}{\sqrt{2}}(0,1, i, 0) \quad
\end{aligned}
$$

In QFT, these polarization vectors represent physical states, so we con trite linear combinations of them:

$$
\begin{aligned}
\text { es. }|\epsilon\rangle & =c_{1}|1\rangle+c_{2}|2\rangle \cdot \text { Define }\langle i \mid j\rangle=-\epsilon_{\mu}^{(i)} \epsilon^{\infty} \mu c_{j)} \\
\langle\epsilon \mid \epsilon\rangle & =\left|c_{1}\right|^{2}\langle 1 \mid 1\rangle+\left|c_{2}\right|^{\prime}\langle 212\rangle+c_{1}^{\infty} c_{2}\langle 1 \mid 2\rangle+c_{1} c_{2} c^{\infty}\langle 211\rangle \\
& -\left(\epsilon_{\mu}^{\prime}\right)^{\prime \prime} \epsilon^{\prime \mu}=1 \\
& =\left|c_{1}\right|^{1}+\left|c_{2}\right|^{2}
\end{aligned}
$$

This inner product is Lorentz-inuminat because the basis veto Charge under Lorentz, but not $|C|^{2}$! Moreover, gauge invariance let us get til of the states with non-poritive norm:

$$
\epsilon_{\mu}^{(0)}=(1,0,0,0)=\langle\langle 0 \mid 0\rangle=-1 \text {, bad! }
$$

$\left.\epsilon_{\mu}^{(f)}=(1,0,0,1)=\right\rangle\langle f \mid f\rangle=0$, unphysical (cancels out of any (forward, or longitudinal, polwization) computation)
Including the Lagrangian for An, our spin-0 and spin-1 Lagrangian is now

$$
\alpha=\left|D_{m} \Phi\right|^{2}-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} F_{\mu v} F^{n v}
$$

Note: $\left[A_{\mu}\right]=\left[\partial_{m}\right]=1$ from covariant derivative, so $\left[F_{m} F^{n u}\right]=4$, as required.

The derivative term in the Lagrangian to- I with only The global symmetry, $\partial_{n} \Phi^{+} \partial^{n} \Phi$, gave rise to the equations of notion for non-interacting (free) scalar fields. Once promoted to a covariant derivative, $\left|D_{m} \Phi\right|^{2}$ contains interactions between Φ and A_{m}.

$$
\begin{aligned}
\left|D_{\mu} \Phi\right|^{2} & =\left(\partial_{\mu} \Phi^{+}+i g Q A_{\mu} \Phi^{+}\right)\left(\partial^{m} \Phi-i g Q A^{\mu} \Phi\right) \\
& =\partial_{\mu} \Phi^{+} \partial^{m} \Phi-A_{\mu}\left(-i g Q\left(\Phi^{+} \partial^{m} \Phi-\partial^{\mu} \Phi^{+} \Phi\right)\right)+g^{2} Q^{2} A_{\mu} A^{\mu}|\Phi|^{2}
\end{aligned}
$$

in QM, this mould be the probability current for the wavetraction. In QET, it's literally the electric current for a charged scalar particle.
$\Rightarrow \mathcal{L}$ contains $-\frac{1}{4} F_{v v} F^{\sim v}-A_{m} J^{m}$, which is exactly how you mould write Maxuellis equations with an external source $J^{n}=(\rho, \vec{\jmath})!$ So Φ sowces currents, which create \vec{E} and \vec{B} firlds from A_{n}, which back-reacts on 区. These coupled equations are impossible to solve exactly, so starting in 2 week, we will use perturbation theory in the coupling strength $g Q$ to approximate the solutions.

Nonabelian gauge fields (very briefly!)
What if we tried one same trick with the SU(2) symmetry? We wont the Lagrasion to be invariant under be local symmetry $\Phi \rightarrow e^{i \alpha^{a}(x) \tau^{a}} \Phi$ where $\tau^{a} \equiv \frac{\sigma^{a}}{2}(a=1,2,3)$. Guess a covariant derivative: $D_{\mu} \Phi=\partial_{\mu} \Phi-i g A_{\mu}^{a} \tau^{a} \Phi$. This time, we now need three spinel fields A_{μ}^{a}, ore for each τ.
will postpone proof for later, but the correct trastormation culls are $\delta A_{\mu}=\frac{1}{9} \partial_{\mu} \alpha+i\left[\alpha, A_{\mu}\right]$ (matrix commutator)
or in components, $\delta A_{\mu}^{a}=\frac{1}{g} \partial_{\mu} \alpha^{a}-\epsilon^{a b c} \alpha^{b} A_{\mu}^{c}$ (recall comertation relation for Pauli matrices, $\left.\left[\sigma^{a}, \sigma^{b}\right]=2 i \epsilon^{a b c} \sigma^{c}\right)$
The correspading non-abelian field strath (a 2×2 matrix-valued create terror) is $F_{N v}=\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)$-iq $\left[A_{n}, A_{v}\right] \longleftarrow$ extra tern because Pali matrices A clever way to unite this:
$D_{\mu}=\partial_{\mu}-i g A_{\mu} \quad$ (abstract covariant derivative opeato-)

$$
\begin{aligned}
{\left[D_{\mu}, D_{v}\right]=} & \left(\partial_{\mu}-i g A_{\mu}\right)\left(\partial_{v}-i g A_{v}\right)-\left(\partial_{v}-i g A_{v}\right)\left(\partial_{\mu}-i g A_{\mu}\right) \\
= & \partial_{\mu} \partial_{v}-i g \partial_{\mu} A_{v}-i g A_{\mu} \partial_{\mu}-i g \not \partial_{\mu} \partial_{v}-g^{2} A_{\mu} A_{v} \\
& -\partial_{\varphi} \partial_{\mu}+i g \partial_{v} A_{\mu}+i g A_{\rho} \partial_{v}+i g A_{\rho} \partial_{\mu}+g^{2} A_{v} A_{\mu} \\
= & -i g\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}-i g\left[A_{\mu}, A_{v}\right]\right) \\
= & -i g F_{\mu v}
\end{aligned}
$$

Can show (Ho) that $\delta F_{w v}=\left[i \alpha, F_{r v}\right]$, so Fro itself is not gauge invariant. However,

$$
\begin{aligned}
\delta\left(F_{n v} \cdot F^{\sim v}\right) & =\delta F_{n} \cdot F^{\sim v}+F_{v v} \cdot \delta F^{\sim v}= \\
= & {\left.\left[i \alpha, F_{v v}\right] F^{\sim v}+F_{m v} C_{i \alpha}, F^{\sim v}\right] } \\
= & i \alpha F_{m v} F^{n v}-F_{v v}(\mid \alpha) F^{\sim v}+F_{\sim v}(i \alpha) F^{m v} \\
\text { and Einstein sumption } & -F_{v v} F^{\sim v i \alpha}
\end{aligned}
$$

One last trick: $\operatorname{Tr}(A B C \cdots)=\operatorname{Tr}(B C \cdots A)$. Trace is caclicull, invrriant, so by taking the trace, we can cancel te remaining terns and get a gauge- invariant object.

$$
\begin{aligned}
& \alpha_{s u(2)}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu v} \cdot F^{r v}\right) \\
& =-\frac{1}{4}\left(F_{m v}^{1} F^{r v 1}-F_{n v}^{2} F^{\sim v 2}-+F_{\sim v}^{3} F^{\sim v} \underline{3}\right) \text { because } \\
& \operatorname{Tr}\left(\left(\tau^{1}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau^{2}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau_{3}\right)^{2}\right)=\frac{1}{4} \operatorname{Tr}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2} .
\end{aligned}
$$

This looks just like 3 copies of the Lagrassion for the ucla) gauge field, Gut hidden inside $F_{w} F^{n v}$ an interaction terms, ie.

$$
F_{\mu v}^{\prime} F^{\mu v 1} \supset A_{m}^{2} A_{v}^{3} \partial^{m} A^{\prime v}
$$

The gauge field interacts with itself!
Let's switch to starlad notation and call the su(2) game fled W and the U(1) gauge Field B. We can also relabel be coupling ga $\rightarrow g^{\prime} y$ (will see uh next week);

$$
\begin{aligned}
D_{\mu} \Phi & =\left(\partial_{\mu}-i g^{\prime} y B_{\mu}-i g W_{\mu}^{a} \tau^{a}\right) \Phi \\
\mathcal{L}_{\Phi, \text { gamed }} & =\left|D_{\mu} \Phi\right|^{2}-M^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} B_{\mu \nu} B^{\mu v}-\frac{1}{4} W_{m \nu}^{2} W^{\mu v a}
\end{aligned}
$$

This completes ore port of our desired classification:
a Lagrartion describing a spins particle of mass m invariant under Poincare transformations and the (gauged) internal symmetries $U(1)$ and $S U(2)$. This description requires us to pick the representations of $u(1)$ and su(2) on Φ : The former is parametrized by a number Y, and k latter is a choice of cepreseration matrices, where we have chosen be 2-dimensional rep using the Pauli matrices, The Lagarion has 区 and W sut-interactions, as well as I-W and I- B interactions.

Massive spin- 1 Fields
As we saw, a mass tern for a vector field is not gauge invariant. However, there are several massive spin-1 particles in nature, which are either composite particles (the ρ meson, for example) or which acquire a mas through the Hings mechanism (the W and Z gauge bosons). So, we should understand what the: Lagrangiuns should look like without assuming any gauge invariance conditions.

Luckily, the story is still quite simple. We still reed to get rid of 1 extraneous degree of freedom, and this will restrict the form of the Lagrangian.
We wart a Lagrangian whose equations of notion will viced $\left(\square+m^{2}\right) A_{n}=0$ in oder to satisfy the relativistic dispersion $p^{2}=n^{2}$. So we can have quadratic terms with 0 or 2 derivatives. The most geneal such Lagrangian is

$$
\mathcal{L}=\frac{a}{2} A^{n} \square A_{\mu}+\frac{b}{2} A^{m} \partial_{\mu} \partial^{v} A_{v}+\frac{1}{2} m^{2} A^{n} A_{\mu} \text { win } a, b, m
$$ arbiters coefficients, (Note that $[\alpha]=4$ if $[A]=1$, a and 6 are dimensionless, ad $[m]=1$)

The equations of motion are $[H W]$

$$
a \square A_{\mu}+b \partial_{\mu} \partial^{v} A_{v}+m^{2} A_{\mu}=0 .
$$

Take ∂^{m} of this to set

$$
\left((a+6) \square+n^{2}\right)\left(\partial^{m} A_{n}\right)=0
$$

We are on the right track if we can enforce $\partial^{\wedge} A_{m}=O^{\prime}$ ' this is a scalar (ie. spin-0) constraint so it projects out $j=0$ as desired. To do this, take $a=1, b=-1$;

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} A^{n} \square A_{n}-\frac{1}{2} A^{n} \partial_{n} \partial_{v} A_{v}+\frac{1}{2} n^{2} A^{n} A_{n} \\
& =-\frac{1}{2}\left(\partial^{v} A^{n} \partial_{v} A_{\mu}-\partial^{v} A^{n} \partial_{n} A_{v}\right)+\frac{1}{2} n^{2} A^{n} A_{n} \quad \text { (integrating bs puts) } \\
& =-\frac{1}{4}\left(\partial_{n} A_{v}-\partial_{v} A_{\mu}\right)\left(\partial^{n} A^{v}-\partial^{v} A^{\sim}\right)+\frac{1}{2} n^{2} A^{n} A_{n} \quad \text { (rearranging) }
\end{aligned}
$$

$$
=-\frac{1}{4} F_{\mu v} F^{\mu v}+\frac{1}{2} n^{2} A^{\sim} A_{\mu} \Leftarrow \operatorname{Proca} \text { (massive spin-1) }
$$ Lagrangian

The field stergth Fro just appeared without having to invoke gouge invariance! The equations of notion are now

$$
\left(\square+m^{2}\right) A_{\mu}=0 \text { and } \partial^{m} A_{m}=0 \text {. }
$$

We can now find the 3 linearls-independent polvization vectors as before, but now in a frame where $p^{m}=(n, 0,0,0)$ Since the Poincare Casimi- $p^{2}=m^{2}$.
In foxier space, have $p^{2}=n^{2}$ and $p \cdot \epsilon=0$. So ca take $\epsilon_{m}^{\prime}=(0,1,0,0), \epsilon_{m}^{2}=(0,0,1,0)$, and $\epsilon_{m}^{2}=(0,0,0,1)$. These Satisfy $\epsilon^{\infty}, \epsilon=-1$ as did the massless polvizations, and they are all physical.
In a boosted frame with $p^{2}=\left(E, 0,0, p_{2}\right) \quad\left(p_{2}^{2}=E^{2}-m^{2}\right)$, we have

$$
\epsilon_{n}^{1}=(0,1,0,0), \quad \epsilon_{m}^{2}=(0,0,1,0), \quad \epsilon_{r}^{2}=\left(\frac{p_{2}}{m}, 0,0, \frac{E}{m}\right) .
$$

The third polarization is called longitudinal because it has a spatial component along the direction of notion.
Note that for ultra-relativistic energies $E \gg$,

$$
\epsilon_{n}^{L} \rightarrow \frac{E}{n}(1,0,0,1)
$$

This will cause problems in QFT, and is why massive spin-1 must either be composite or cerise from a tigons mechanism.

