Spin - $\frac{1}{2}$
Of the Lorentz ceps we foul in week 2, weave written down Lagrangian for $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Now well finish the $j 06$ with $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$.
Recall $\vec{\jmath}^{+}=\frac{\vec{j}+i \vec{k}}{2}$ ard $\vec{\jmath}=\frac{\vec{\jmath}-i \vec{k}}{2}$ formed su(2) algebras

$$
\left(\frac{1}{2}, 0\right): \vec{J}=\frac{1}{2} \vec{\sigma}, \vec{\jmath}=0 \quad \Rightarrow \vec{J}=\frac{1}{2} \vec{\sigma}, k=\frac{i}{2} \vec{\sigma}
$$

These act on two-comporent objects we will call left-handed spinous: $\psi_{L} \rightarrow e^{\frac{1}{2}(-i \vec{\theta} \cdot \sigma-\vec{\beta} \cdot \vec{\theta})} \psi_{L}$, where $\vec{\theta}$ parancterizes a rotation and $\vec{\beta}$ a boost.
NOTE! OW sign Convention for θ differs from Schwartz, because ow sign yields rotations consistent with the right-hand rule. So if youre following along in schwartz Ch. 10, take $\theta \rightarrow-\theta$ in his formulas. Note also the transformation of ψ_{L} is not unitary. As with spin -1, we will use momentum-dependert polarizations (ie. spino-s) to fix this.
Infinitesimally $l_{1}, \delta \psi_{L}=\frac{1}{2}\left(-i \theta_{j}-B j\right) \sigma_{j} \psi_{L}$.
Similarly, $\left(0, \frac{1}{2}\right): \vec{\jmath}=0, \vec{\jmath}+\frac{1}{2} \vec{\sigma} \Rightarrow \vec{\jmath}=\frac{1}{2} \vec{\sigma}, \vec{k}=-\frac{i}{2} \vec{\sigma}$
(Same behavior under rotations, apposite mere boors)
This acts on right-hanted spinari. $\psi_{R} \rightarrow e^{\frac{1}{2}(-i \vec{\theta} \cdot \vec{\sigma}+\vec{B} \cdot \vec{\sigma})} \psi_{R}$

$$
\delta \psi_{R}=\frac{1}{2}\left(-i \theta_{j}+\beta j\right) \sigma_{j} \psi_{R}
$$

Take Hermitic conjugates:

$$
\left.\begin{array}{l}
\delta \psi_{L}^{+}=\frac{1}{2}\left(i \theta_{j}-\beta_{j}\right) \psi_{L}^{+} \sigma_{j} \\
\delta \psi_{R}^{+}=\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j}
\end{array}\right\} \text { remember } \sigma_{j}^{+}=\sigma_{j}
$$

How do we write down a Lorentz-inumiat Lagrangian? So for, so Lorentz indices are present to contract with e.a. $\partial_{\mu} \psi_{L}$.

Con try just multiplying spinors, eq. $\psi_{R}^{+} \psi_{R}$, but th's is not Lorentz invariant!

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \psi_{R}\right) & =\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j} \psi_{R}+\frac{1}{2} \psi_{R}^{+}\left(-i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =\beta_{j} \psi_{R}^{+} \sigma_{j} \psi_{R} \neq 0
\end{aligned}
$$

On the other hark the product of a left-handed ad ripht-handed spinor is invariant:

$$
\begin{aligned}
\delta\left(\psi_{L}^{+} \psi_{R}\right) & =\frac{1}{2}\left(i \theta_{j}-\beta_{j}\right) \psi_{L}+\sigma_{j} \psi_{R}+\frac{1}{2} \psi_{l}^{+}\left(-i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =0
\end{aligned}
$$

This iss Hermitian, so add its Hermitian conjugate.
$L \supset n\left(\psi_{L}+\psi_{R}+\psi_{R}{ }^{+} \psi_{L}\right) \in$ will see $h_{\text {is }}$ is a mass term for

$$
\text { Spin- } \frac{1}{2} \text { fields }
$$

Conclusion: without derivatives, only a product of ψ_{L} ad ψ_{R} is loretz-inuciat. But just this term alone gives equations of nation $\psi_{L}=\psi_{R}=0$, which is very boring.
Consider $\psi_{R}^{+} \sigma_{i} \psi_{R}$.

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \sigma_{i} \psi_{R}\right) & =\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{k}^{+} \sigma_{;} \sigma_{i} \psi_{R}+\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{i} \sigma_{j} \psi_{R} \\
& =\frac{\beta_{j}}{2} \psi_{R}^{+} \underbrace{\left\{\sigma_{i}, \sigma_{j}\right\} \psi_{R}-\frac{i \theta_{j}}{2} \psi_{R}^{+}[\underbrace{\text { commutator }}_{\left.i, \sigma_{j}\right]} \psi_{R}}_{\text {articomuntafi- }} \\
& =2 i_{i j k} \sigma_{k} \\
& =\beta_{i j} \psi_{R}^{+} \psi_{R}+\epsilon_{i j k} \theta_{j} \psi_{R}^{+} \sigma_{k} \psi_{R}
\end{aligned}
$$

Let's dethe $\sigma^{\mu}=(\mathbb{1}, \tilde{v})$. Claim: $\psi_{R}{ }^{+} \sigma^{\mu} \psi_{R} \equiv\left(\psi_{R}{ }^{+} \psi_{R}, \psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)$ has precisely, the lorentz tronstormation properties of a 4 -vector $V^{m} \equiv\left(v^{0}, \vec{v}\right)$:

$$
\begin{aligned}
& \delta V^{0}=\vec{\beta} \cdot \vec{V} \\
& \delta \vec{v}=\vec{\beta} v^{0}+\vec{\theta} \times \vec{v} \quad(\text { you did this in }|+w|)
\end{aligned}
$$

CAUTION: σ^{m} is NOT a 4-vector. It is just a collection of 4 matrices. However, be notation and the previous calculation make it clear that $i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}$ is Loretz-invmiant (factor of i makes his term Hermitian)
Similarly $y, \vec{\sigma}^{\mu} \equiv(\mathbb{1},-\vec{\sigma})$ is Loreatz-invariant when sandwiched befucen ψ_{L} and ψ_{L}^{+}
$\Rightarrow \alpha=i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}+i \psi_{L}{ }^{+} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}-m\left(\psi_{R}{ }^{+} \psi_{L}+\psi_{L}^{+} \psi_{R}\right)$ is he Lagoasian
for a left-handel and a right-harled spin- $\frac{1}{2}$ particle coupled with a mass term. Note there is only one derivative, so $[\psi]=\frac{3}{2}$ (a bit weird!)
Equations of notion: trent ψ_{n} ad ψ_{R}^{+}as independent, so e.orm. for $\psi_{n}^{+}, \psi_{L}^{+}$ae

$$
\left.\begin{array}{l}
i \sigma^{\mu} \partial_{\mu} \psi_{R}-m \psi_{L}=0 \\
i \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}-m \psi_{R}=0
\end{array}\right\} \text { Dirac equation }
$$

We will show shots that both ψ_{L} and ψ_{R} satisfy Klein-Gordan e_{η}, so indeed, m is acting like a mass. Before that, though let's consider internal symmetries.
ψ_{R} and ψ_{L} live in differat representations of Loratz group, so con trastoon differently under internal symmetries. Suppose $\psi_{L} \rightarrow e^{i Q, \alpha} \psi_{L}$ ad $\psi_{R} \rightarrow e^{i \alpha_{2} \alpha} \psi_{R}, w /$ same α. Kinetic terns are invariant, but not mass terms!

$$
\psi_{R}^{+} \psi_{L} \rightarrow e^{i\left(\alpha_{1}-\alpha_{2}\right) \alpha} \psi_{R}^{+} \psi_{L}
$$

This fact determines an enormous amount of the structure of the $S M$.
Igoring ness terns for now, we can see hat i $\psi_{L, R}^{+}(-)^{m} \partial_{\mu} \psi_{L, R}$ are invariant under any globul U(1) or SU(N) transtornctions, under which ψ^{+}and ψ tronturm opposites.
To promote the ie to local symmetries, just replace
$\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}-i g Q A_{\mu}$ or $D_{\mu} \equiv \partial_{\mu}-i g T^{a} A_{\mu}^{a}$ as for scalars.
\Rightarrow interaction between spin- $\frac{1}{2}$ ardspin-1, e.g. electron-photon.

If ψ_{L} and ψ_{R} have the same symmetries, for $m \neq 0$ it is convenient to combine then ir to a 4-component object $\psi=\binom{\psi_{L}}{\psi_{R}}$, called a Dirac spinor. If we define

$$
\bar{\psi} \equiv \psi^{+} \gamma^{0}=\left(\begin{array}{lll}
\psi_{R}^{+} & \psi_{L}^{+}
\end{array}\right) \text {where } \gamma^{0}=\left(\begin{array}{cc}
0_{2 \times 2} & n_{2 \times 2} \\
n_{2 \times 2} & 0_{2 \times 2}
\end{array}\right)
$$

we can write the Lagrangian more simply as
$\mathcal{L}=\bar{\psi}\left(i \gamma^{m} D_{\mu}-n\right) \psi=0$ where $n \equiv n \times \mathbb{1}_{4 \times 4}$
whee $\gamma^{n}=\left(\begin{array}{cc}0 & \sigma^{m} \\ \sigma^{n} & 0\end{array}\right)$. Recall from HW 2 that $S^{n v}=\frac{i}{4}\left[\gamma^{\sim}, \gamma^{v}\right]$ satisfied the commutation relations for the lorentz group, but they were block-diagonal so this is a reducible representation obtained by combining ψ_{R} and ψ_{L}. The equation of motion is easily obtained from $\frac{\partial c}{\partial \bar{\psi}}=0$.'

$$
\left(i r^{n} D_{\mu}-n\right) 4=0
$$

Setting $D_{m}=\partial_{n}$ (i.e. ignoring the coupling to the gauze field), con stow that ψ satisfies the Klein-Go-don equ. by acting with (irv$\partial_{v}+m$) on left:

$$
\begin{aligned}
O=\left(i \gamma^{v} \partial_{v}+n\right)\left(i \gamma^{n} \partial_{n}-n\right) \psi & =\left(-\gamma^{v} \gamma^{m} \partial_{v} \partial_{\mu}-m^{2}\right) \psi \\
\left(\text { kill minus signs, use } \partial_{n} \partial_{v}=\partial_{v} \partial_{n}\right): & =\left(\frac{1}{2}\left\{\gamma^{m}, \gamma^{v}\right\} \partial_{n} \partial_{v}+m^{2}\right) \psi \\
\left\{\gamma^{n}, \gamma^{v}\right) \equiv \gamma^{n} \gamma^{v}+\gamma^{v} \gamma^{n}=2 \eta^{n} & =\left(\eta^{n v} \partial_{n} \partial_{v}+n^{2}\right) \psi \\
(\text { (clifford algebra) } \quad & =\left(\partial_{n} \partial^{n}+n^{2}\right) \psi
\end{aligned}
$$

Convenient notation: contracting with r denoted by a slash, ice. $\gamma^{\mu} \partial_{\mu} \equiv \varnothing$
To obtain equation of motion for Ψ, integrate derivative term by pats:

$$
\alpha=-i\left(D_{m} \bar{\psi}\right) \gamma^{m} \psi-m \bar{\psi}
$$

$\frac{\partial f}{\partial \psi}=0 \Rightarrow-i D_{m} \bar{\psi} r^{m}-m \bar{\psi}=0$, or in a more convenient notation, $\bar{\psi}(-i \overleftarrow{\phi}-m)=O$ ($\stackrel{\mathscr{D}}{ }$ is a reminder that derivative acts on the left, before r^{n})

Nether's Theorem
Extremely powerful tool in QFT; Symmetries \leftrightarrow conservation laws. An example: the statement of conservation of charge can be expressed in $E+M$ as $\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \vec{J}$, or in relativistic notation, $\partial_{\mu} j^{n}=0$ for the 4 -current $j^{n} \equiv(\rho, \vec{\jmath})$.
We argued that the gauge fired coupling to ψ could describe electron- photon interactions, so we should be able to build a current operator out of $\bar{\psi}$ which is conserved when ψ satisfies its equation of notion. Looking at the Lagrangian, we find

$$
\begin{aligned}
\alpha=i \bar{\psi} \varnothing \psi-n \bar{\psi} \psi= & i \bar{\psi}\left(\partial_{\mu}-i g Q A_{m}\right) \gamma^{m} \psi-m \bar{\psi} \psi \\
&)-A_{\mu}(\underbrace{-g Q \bar{\psi} \gamma^{m} \psi}_{J^{m}})
\end{aligned}
$$

Check conservation: $\partial_{\mu}\left(-g Q \bar{\psi} \gamma^{m} \psi\right)=-g Q \bar{\psi}(\underset{\gamma}{\nabla}+\vec{\gamma}) \psi$
Recall Dirac equation were (expanding out covariant derivative)

$$
\begin{aligned}
& (i \varnothing-m) \psi=0 \Rightarrow X \psi=(i g Q A-i m) \psi \\
& \Psi(-i \bar{D}-m)=0 \Rightarrow \bar{\psi} \bar{\delta}=\bar{\psi}(-i g Q A+i m) \\
& \Rightarrow \partial_{\mu} j^{n}=-g Q \bar{\psi}(-i g \nless A+i \mu+i g Q A-i g n) \psi=0
\end{aligned}
$$

Note that A piece cancels on it sown, so $\partial_{n} ;^{n}=0$ ever without A!

Noethers theorem guarantees $\partial_{\sim} j^{n}$ as a consequence of the invariance of \mathcal{L} under the internal symmetry $\psi \rightarrow e^{i \alpha \alpha} \psi$
The theorem: α invariant under a continuous symmetry $\delta \varphi_{i}=\alpha \frac{\delta \varphi_{i}}{\delta \alpha}$
$\Leftrightarrow j^{\mu} \equiv \sum_{i} \frac{\partial \alpha}{\partial\left(\partial_{\mu} \varphi_{i}\right)} \frac{\Gamma \varphi_{i}}{\delta_{\alpha}}$ conserved.
(see schwartz 3.3 for a proof)
φ_{i} can be any Fields (scalar, fermion....), and \sum_{i} runs over all fields transformed by the symueter.
Example i, $\mathcal{L}=\Psi(i \gamma-m) \psi$ invt under $\psi \rightarrow e^{i \alpha \alpha} \psi, \bar{\psi}=e^{-i ब \alpha} \bar{\psi}$

$$
\begin{aligned}
& \Rightarrow \delta \psi=i Q \alpha \psi \text {, so } \frac{\delta \psi}{\delta \alpha}=i Q \psi, \text { similar } \frac{\delta \bar{\psi}}{\sigma_{\alpha}}=-i Q \bar{\psi} \\
& j^{n}=\frac{\partial \alpha}{\partial\left(\partial_{\mu} \psi\right)} \frac{\delta \psi}{\delta_{\alpha}}+\frac{\partial \alpha}{\partial\left(\partial_{\mu} \bar{\psi}\right)} \frac{\delta \bar{\psi}}{\delta \alpha}=i \bar{\psi} \gamma^{n}(i Q \psi)+O\left(\kappa \text { docsin}+ \text { have } \partial_{2} \bar{\psi}\right) \\
&=-Q \bar{\psi} \gamma^{n} \psi \text {, same as we found bethe! }
\end{aligned}
$$

(up to a factor of g, since without a gauge field thee is no coupling) jr as constructed from a symmetry is called a Nocther current. Can play same game for a complex scalar field, will find for uni) $j^{\mu}=-i Q\left(\Phi^{+} \partial^{n} \Phi-\left(\partial^{n} \Phi^{+}\right) \Phi\right)$ exactly as we sam last week. Non-abelion requires being a little more careful with indices, well do this next time.

All our Lagrangians are also invariant under Poincarí, so: translation invariance \leftrightarrow conservation of enegss-mometum rotation invorionce \Leftrightarrow conservation of angular momentum.

In HW 3 you'll sec how to interpect the Noether current for a gauge field with a translation invariant action.

