Spin-
$$\frac{1}{2}$$

Of the Lorentz reps are find in Week 2, while written down
Lagrangian for (0,0) and (5,12). Now we'll finish the
job with ($\frac{1}{2}$,0) and (0, $\frac{1}{2}$).
Recall $\vec{J} = \vec{J} \cdot i\vec{k}$ and $\vec{J} = \vec{J} \cdot i\vec{k}$ found $dn(k)$ algebras
 $(\frac{1}{2}, 0)$; $\vec{J} = \frac{1}{2}\vec{\sigma}$, $\vec{J}^{\pm} = 0 \implies \vec{J} = \frac{1}{2}\vec{\sigma}$, $k = \frac{1}{2}\vec{\sigma}$
There act on two-compared objects we will call left-handed spinors:
 $\psi_{\perp} = e^{\frac{1}{2}(1-\vec{\sigma})\cdot\vec{\sigma}\cdot\vec{\sigma}\cdot\vec{\sigma})}\psi_{\perp}$, where $\vec{\sigma}$ parameters a robustion of $\vec{\sigma}$ a boost.
NOTE! Our sign convertion for σ differs from Schwartz because our
sign yields rotations consistent with the right-hand rule. So if you're
following along in Schwartz Ch. 10, take $\theta = -\vec{\sigma}$ in his formules.
Note also the transformation of ψ_{\perp} is not Unitary. As with spin-1,
we will use momentum dependent polorizations (i.e. spinors) to fix this.
Infinitesimely, $\vec{\sigma}\psi_{\perp} = \frac{1}{2}(i\cdot\theta_j - \beta_j)\cdot\vec{\sigma}\psi_{\perp}$.
Similarly, $(0, \frac{1}{2})$: $\vec{J} = 0$, $\vec{J} = \frac{1}{2}\vec{\sigma} = -\vec{j}$, $\vec{K} = -\frac{1}{2}\vec{\sigma}$
(some behavior under robotions, opposite we wate)
This action right-handed spinors: $\psi_{\vec{K}} = e^{\frac{1}{2}(i\cdot\theta_j + \beta_j)\cdot\vec{\sigma}\psi_{\vec{K}}}$
Take Hermitian (an imposets:
 $\vec{\delta}\psi_{\vec{K}}^{+} = \frac{1}{2}(i\cdot\theta_j + \beta_j)\psi_{\vec{K}}^{+}\sigma_j$ (creember $\sigma_j^{+} = \sigma_j$
 $\vec{\delta}\psi_{\vec{K}}^{+} = \frac{1}{2}(i\cdot\theta_j + \beta_j)\psi_{\vec{K}}^{+}\sigma_j$

How do we write down a Lorentz-invariant Lagrangian? So for, no Lorentz indices are present to contract with e.g. Inthe.

La try just multiplying spinors, e.g.
$$\Psi_R^+ \Psi_R^-$$
, but this is not
Lorentz invariant!
 $\int (\Psi_R^+ \Psi_R) = \frac{1}{2} (i \theta_j + \beta_j) \Psi_R^+ \sigma_j \Psi_R^- + \frac{1}{2} \Psi_R^+ (i \theta_j + \beta_j) \sigma_j \Psi_R^-$
 $= \beta_j \Psi_R^+ \sigma_j \Psi_R^- \neq 0$
On the other hand, the product of a left-handed and right-handed
Spinor is invariant:
 $\int (\Psi_L^+ \Psi_R) = \frac{1}{2} (i \theta_j - \beta_j) \Psi_L^+ \sigma_j \Psi_R^- + \frac{1}{2} \Psi_L^+ (-i \theta_j + \beta_j) \sigma_j \Psi_R^-$
 $= 0$
This isn't Hermitian, so add its Hermitian covingate.
 $\int m (\Psi_L^+ \Psi_R^+ \Psi_R^+ \Psi_L) = mill see this is a miss term for
Spinor is invariant.$

12

Conclusion, without derivatives, only a product of 4 ad 4 is boretz-involut. But just this ten alone gives equations or motion $\Psi_L = \Psi_R = 0$, which is very boring.

$$\begin{aligned} \left(\begin{array}{c} \sigma_{s}; der \quad \Psi_{k}^{\dagger} \sigma_{i} \Psi_{k}^{\dagger} \\ & \overline{\sigma}_{i} \Psi_{k} \end{array} \right) &= \frac{1}{L} \left(i \theta_{i} + \beta_{i} \right) \Psi_{k}^{\dagger} \sigma_{i} \sigma_{i} \Psi_{k} + \frac{1}{2} \left(-i \theta_{i} + \beta_{i} \right) \Psi_{k}^{\dagger} \sigma_{i} \sigma_{j} \Psi_{k} \\ & = \frac{\beta_{i}}{L} \Psi_{k}^{\dagger} \left\{ \sigma_{i}, \sigma_{i} \right\} \Psi_{k} - \frac{i \theta_{j}}{L} \Psi_{k}^{\dagger} \left[\sigma_{i}, \sigma_{j} \right] \Psi_{k} \\ & \overline{\sigma_{k}} = \frac{\beta_{i}}{L} \Psi_{k}^{\dagger} \left\{ \overline{\sigma_{i}}, \sigma_{i} \right\} \Psi_{k} - \frac{i \theta_{j}}{L} \Psi_{k}^{\dagger} \left[\sigma_{i}, \sigma_{j} \right] \Psi_{k} \\ & = \frac{\beta_{i}}{L} \Psi_{k}^{\dagger} \left\{ \overline{\sigma_{i}}, \sigma_{i} \right\} \Psi_{k} - \frac{i \theta_{j}}{L} \Psi_{k}^{\dagger} \left[\sigma_{i}, \sigma_{j} \right] \Psi_{k} \\ & = 2\delta_{ij} \\ & = 2\delta_{ij} \\ & = 2\delta_{ij} \\ & = 2\delta_{ij} \\ \end{array} \end{aligned}$$

$$\begin{array}{l} \underbrace{\left(Aution' \quad \sigma^{-m} \text{ is } Not \quad a \text{ 4-vector. It is just a collection of 4 metrices.} \right)}_{However, the notation and the previous Calculation make it clear that it $\mu_{R}^{+} \sigma^{-m} \partial_{m} \Psi_{R} \text{ is Lore-tz-invariant (factor of i makes this tern Hermitian)}_{Similar(7, \end{subscript{array}} = (1, -\sigma^{2}) \text{ is Lore-tz-invariant when sandwicked between } \Psi_{L} and \Psi_{L}^{+} \\ => \left[\mathcal{L} = i \Psi_{R}^{+} \sigma^{-n} \partial_{m} \Psi_{R} + i \Psi_{L}^{+} \overline{\sigma}^{-n} \partial_{m} \Psi_{L}^{-} - m \left(\Psi_{R}^{+} \Psi_{L}^{+} \Psi_{L}^{+} \Psi_{L}^{+} \Psi_{R}^{-} \right) \right] \text{ is he Lagrangian} \\ \text{for a left-handed and a right-haded spin-\frac{1}{2} particle coupled with a mass term. Note there is only are derivative, so $\left[\Psi_{l}^{-} = \frac{3}{2} \right] \text{ (a bit werd!)} \\ \text{Equations of motion'. treat } \Psi_{R} \text{ and } \Psi_{R}^{+} \text{ as independent, so e.o.m. for } \Psi_{R}^{+}, \Psi_{L}^{+} \text{ or } \\ \text{i} \sigma^{-n} \partial_{m} \Psi_{L}^{-} m \Psi_{L}^{-} O \end{array} \right] \begin{array}{l} Dirac equation \\ \text{i} \overline{\sigma}^{-n} \partial_{m} \Psi_{L}^{-} m \Psi_{R}^{-} = 0 \end{array}$$$$

We will show shorts that both
$$\Psi_{L}$$
 and Ψ_{R} so tricty Klein-Gordon eqn, so indeed,
m is acting like a mass. Before that, though let's consider
internal symmetries.
 Ψ_{R} and Ψ_{L} live in different representations of Loratz group, so can trastorn
differently under internal symmetries. Suppose $\Psi_{L} \Rightarrow e^{iR_{1}R}\Psi_{L}$ and
 $\Psi_{R} \Rightarrow e^{iR_{2}R}\Psi_{R}$, w/same α . Kinetic terms are invariant, but not moss terms!
 $\Psi_{R}^{+}\Psi_{L}^{-} \Rightarrow e^{i(R_{1}-R_{2})R}\Psi_{R}^{+}\Psi_{L}^{-}$
This fact determines an energous amount of the structure of the SM.
Ignoring mess terms for now, we can see that
 $i\Psi_{LR}^{+}\Theta_{-}^{-}\Phi_{-}\Psi_{RR}^{+}$ are invariant under only global U(1) or SU(N) trastornations,
under which Ψ^{+} and Ψ trastorn oppositels.
To promote these to local symmetries, just replace
 $\partial_{m} \Rightarrow D_{m} \equiv \partial_{m} - igRA_{m}$ or $D_{n} \equiv \partial_{m} - igT^{n}A_{m}^{-}$ as for scalars.
 \Rightarrow interactions between spin- $\frac{1}{2}$ and spin-1, e.g. elector-photon.

IF 4, and 4k have the same symmetries, for
$$m \neq 0$$
 it is
convenient to combine them into a 4-component object
 $\Psi = \begin{pmatrix} \Psi_{k} \\ \Psi_{k} \end{pmatrix}$, called a Dirac spinor. If we define
 $\overline{\Psi} = \begin{pmatrix} \Psi_{k} \\ \Psi_{k} \end{pmatrix}$, called a Dirac spinor. If we define
 $\overline{\Psi} = \begin{pmatrix} \Psi_{k} \\ \Psi_{k} \end{pmatrix}$, called a Dirac spinor. If we define
 $\overline{\Psi} = \begin{pmatrix} \Psi_{k} \\ \Psi_{k} \end{pmatrix}$, called a Dirac spinor. If we define
 $\overline{\Psi} = \begin{pmatrix} \Psi_{k} \\ \Psi_{k} \end{pmatrix}$, where $Y^{0} = \begin{pmatrix} 2\pi e \\ \Psi_{k} \\ \Psi_{k} \end{pmatrix}$
we can write the Lagrangian more simply as
 $\Lambda = \overline{\Psi}(iY^{n}D_{n} - m)\Psi = 0$ where $m \equiv m \cdot \Psi_{t+1}$
where $Y^{n} = \begin{pmatrix} 0 & 0 \\ \overline{P} & 0 \end{pmatrix}$. Recall from the 2 that
 $S^{*V} = \frac{i}{\Psi}(Y^{*}Y^{*})$ satisfied the compatibility relations for the
Lorentz group, but they wire block-diagonal so this is
a reducible representation obtained by combining Ψ_{k} and Ψ_{k} .
The equation of motion is easily obtained from $\frac{\partial X}{\partial \overline{T}} = 0$.
($iY^{*}D_{n} - m)\Psi = 0$.
Setting $D_{n} = D_{n}$ (i.e. ignoring the coupling to the gauge field).
Can show that Ψ satisfies the klein-bondon eqn by
acting with $(iY^{*}\partial_{n} - m)\Psi = (-Y^{*}Y^{*}\partial_{n}\partial_{n} - m^{*})\Psi$
(kill minus sizes use $\partial_{n}h = \partial_{n}h^{*} = (\frac{1}{2}Y^{*}, Y^{*})\partial_{n}\partial_{n} + m^{*})\Psi$
(convenient notation: contracting with Y decoded by a slosh.

To obtain equation of motion for I, integrate derivative term by parts:

i.e. $\gamma^{-}\partial_{-} \equiv \beta$

 $\begin{aligned} \mathcal{A} &= -i(0_{n}\overline{\psi}) \mathcal{E}^{n} \psi - m\overline{\psi} \psi \\ \frac{\partial \mathcal{A}}{\partial \psi} &= 0 = \sum -i \partial_{n}\overline{\psi} \mathcal{E}^{n} - m\overline{\psi} = 0, \text{ or in a more Convenient notation,} \\ \overline{\psi}(-i\overline{\psi} - m) = 0 \quad (\overline{\psi} \text{ is a reminder that derivative acts on the left, before } \mathcal{E}^{n}) \end{aligned}$

Noether's Theorem

Extremely powerful tool in QFT; symmetries a conservation laws. An example: the statement of conservation of charse can be expressed in E+M as $\frac{\partial P}{\partial t} = \overline{P} \cdot \overline{J}$, or in relativistic notation, $\partial_{\mu} j^{\mu} = 0$ for the 4-current $j^{\mu} \equiv (P, \overline{J})$. We argued that the gauge field coupling to 4 could describe electron-photon interactions, so we should be able to build a current operator out of $\overline{\Psi}$ which is conserved when Ψ satisfies its equation of motion. Looking at the Lagrangian, we find $\mathcal{L} = i \overline{\Psi} \mathcal{B} \Psi - m \overline{\Psi} \Psi = i \overline{\Psi} (\partial_{\mu} - i g Q A_m) Y^* \Psi - m \overline{\Psi} \Psi$

$$) - A_n(-gQ\bar{+}r^n +)$$

Check conservation: $\partial_{n}(-gQFVT+) = -gQF(S+S)F$ Recall Dirac equations were (expanding out covariant derivative) (iD-m)F=0 => SF=(igQA-im)FF(-iD-m)=0 => FS=F(-igQA+im)

Noether's theorem guarantees du j' as a consequence of the invariance of I under the internal symmetry 4-3 eiler & The theorem? \mathcal{L} invariant under a continuous symmetry $\mathcal{J}_{\mathcal{Q}_i} = \alpha \frac{\mathcal{J}_{\mathcal{U}_i}}{\mathcal{J}_{\alpha}}$ $\ll \mathcal{J}_i^* = \frac{\mathcal{J}_i^*}{\mathcal{J}_i^*} \frac{\mathcal{J}_i^*}{\mathcal{J}_i^*}$ conserved. (see Schwartz 3.3 For a poor) "(; can be any fields (scale, ferning...), and & runs over all Fields transformed by the symmetry. Example: $\lambda = \overline{\Psi}(iX - m)\Psi$ invt. under $\Psi = e^{iR_{x}}\Psi, \overline{\Psi} = e^{-iR_{x}}\overline{\Psi}$ => $J \Psi = i Q \alpha \Psi$, so $\frac{J \Psi}{J \alpha} = i Q \Psi$, similarly $\frac{J \Psi}{J \alpha} = -i Q \Psi$ $j^{n} = \frac{\partial \mathcal{L}}{\partial (\partial_{n} \psi)} \frac{\mathcal{J}\psi}{\mathcal{J}\chi} + \frac{\partial \mathcal{L}}{\partial (\partial_{n} \overline{\psi})} \frac{\mathcal{J}\overline{\psi}}{\mathcal{J}\chi} = i\overline{\psi}\mathcal{F}^{(iR\psi)} + O\left(\mathcal{L} \operatorname{doesn}^{*} + \operatorname{have} \partial_{n} \overline{\psi}\right)$ $= -Q\overline{\psi}\mathcal{F}^{n}\psi \quad \text{same as we found between the same of the same of$ (up to a factor of g, since without a gauge field there is no coupling) j^ as constructed from a symmetry is called a Noether current. Lan play same game for a complex scalar field, will find for UCI) $j^{\uparrow} = -i Q (\overline{\Psi}^{\dagger} \partial^{\uparrow} \overline{\Psi} - (\partial^{\uparrow} \overline{\Psi}^{\dagger}) \overline{\Psi}) exactly as we saw last week.$ Non-abelian requires being a little more careful with indices, we'll do this next time.

All our Lagrangians are also invariant under Poincaré, so: translation invariance => conservation of energy-momentum rotation invariance => conservation of angular momentum. In HW 3 you'll see how to interpret the Noether current for a gauge Field with a translation-invariant action.