Quantum electrodynamics

SM Lagrangian from last time:

\[L_{\text{SM}} = L_{\text{kinetic}} + L_{\text{Higgs}} + \frac{1}{4} \frac{G}{\alpha} \left[\epsilon_{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} - \frac{1}{4} \frac{G}{\alpha} \beta_{\mu\nu} \beta_{\rho\sigma} \right] + \frac{1}{2} \sum_{f=1}^{3} \left(\bar{L}^+_f \sigma^a D^a \nu_f + \bar{\nu}_f \sigma^a D^a L^+_f + i \bar{L}^+_f \gamma^5 D^a \nu_f + i \bar{\nu}_f \gamma^5 D^a L^+_f \right) \\
- Y_{ij} \bar{L}^+_i \nu_j - Y_{ij} L^+_i \bar{\nu}_j - Y_{ij} \bar{\nu}_i \nu_j + h.c. + m^2 H^+ H - \lambda (H^+)^2 \]

Focus on these terms today. After setting \(H = (0, v) \) and diagonalizing \(Y_{ij} \), bottom component of fermion doublet \(\nu' = (\nu^c_L, \nu^c_R) \) is

\[\frac{1}{2} \sum_{f=1}^{3} \left(\bar{\nu}_f \sigma^a \partial \nu_f + \bar{\nu}_f \gamma^5 \partial \nu_f + \bar{\nu}_f \gamma^5 \gamma^5 \right) - y_f \nu^c_L \bar{e}_R + h.c. \]

We want to identify \(y_f v \equiv m_f \), but for this to describe charged leptons (electrons, muons, taus), we have to be able to combine \(L \) and \(R \) spinors into a 4-component spinor \(\psi = (e_L, e_R) \) with the correct electric charge. Recall \(Y = -1 \) for \(e_L \), but \(Y = -\frac{1}{2} \) for \(e_R \), so this isn't quite right.

In fact, \(Q = T_3 + Y \), where \(T_3 \) is the 3rd generator of \(SU(2)_L \),

\[T_3 = \frac{1}{2} \sigma_3 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \] so \(e_L \) is an eigenvector of \(T_3 \) with eigenvalue \(-\frac{1}{2} \).

\[Q_L = -\frac{1}{2} + (-\frac{1}{2}) = -1 \] (this works, \(Q = 0 - 1 = -1 \))

Conclusion: Electromagnetism is a linear combination of \(SU(2)_L \) and \(U(1)_Y \), gauge bosons.
We will see later on that the remaining SU(2) gauge fields are much heavier than m_e, m_mu, so for the time being we can ignore them:

$$L_{QED} = \left(\frac{2}{3} \right) \overline{\Psi} \gamma^\mu (i \partial_\mu - e A_\mu) \Psi - m^2 \overline{\Psi} \Psi - \frac{1}{4} F_{\mu \nu} F^{\mu \nu}$$

where $\Psi = (e_L, e_R)$, $\overline{\Psi} = (e_L^+, e_R^+) = \Psi^+ \gamma^0$

Classical spinor solutions

(Massive) Dirac equation: $i \gamma^\mu \partial_\mu \Psi - m \Psi = 0$

Look for solutions: $\Psi = e^{-ip^0} (x_L, x_R)$ where x_L, x_R are constant 2-component spinors

$$\gamma^\mu p_\mu (x_L, x_R) = m (x_L, x_R)$$

$$\begin{pmatrix} 0 & p \cdot \sigma \\ p \cdot \bar{\sigma} & 0 \end{pmatrix} (x_L, x_R) = m (x_L, x_R)$$

First look for solutions with $p^0 = 0$, can construct the solution for general p with a Lorentz boost. $p \cdot \sigma = p \cdot \bar{\sigma} = m \gamma^0$, so

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} (x_L, x_R) = 0 \quad \Rightarrow \quad x_L = x_R, \text{ but otherwise unconstrained}$$

Choose a basis: $x_L = (1)$ or $(0, 1)$, so let 4-component solutions be

$$u_+ = \overline{\psi} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad u_- = \overline{\psi} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$ These represent spin-up and spin-down electrons

Just like with complex scalar fields, there are also negative-frequency solutions $e^{+i p^0} (x_L, x_R)$ that represent antiparticles: positrons. Changing sign of p^0 means $x_L = -x_R$.

$$u_+ = \overline{\psi} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad u_- = \overline{\psi} \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$ Physical spin-up positrons have $x_L = (0)$.

Note: different labeling convention from Schwartz. This comes from QFT.
Can construct solution for general \(p \) with Lorentz transformations.

For now, will just write down the solution and check that it works:

\[\psi(p) = \begin{pmatrix} \sqrt{p^-} \xi_+ \\ \sqrt{p^-} \xi_- \end{pmatrix}, \quad \psi(p) = \begin{pmatrix} \sqrt{p^-} \eta_+ \\ -\sqrt{p^-} \eta_- \end{pmatrix} \]

where \(\xi_+ = \eta_+ = (1, 0), \quad \xi_- = \eta_- = (0, 1) \)

Check Dirac equation for \(\psi \):

\[
\begin{pmatrix} 0 & \sigma^\rho \\
\sigma^\rho & 0 \end{pmatrix} \begin{pmatrix} \sqrt{p^-} \xi_+ \\ \sqrt{p^-} \xi_- \end{pmatrix} = \begin{pmatrix} \sqrt{p^-} \begin{pmatrix} \sigma^\rho \xi_+ \end{pmatrix} \\ -\sqrt{p^-} \begin{pmatrix} \sigma^\rho \xi_- \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \sqrt{p^-} \xi_+ \\ -\sqrt{p^-} \xi_- \end{pmatrix} = m \psi \sqrt{p^-}
\]

To see how the spinors behave, let's let \(\vec{p} = p \hat{z} \):

\[
p \cdot \sigma = \begin{pmatrix} E-p_z & 0 \\ 0 & E+p_z \end{pmatrix}, \quad p \cdot \sigma = \begin{pmatrix} E+p_z & 0 \\ 0 & E-p_z \end{pmatrix}, \quad \text{and since these matrices are already diagonal, taking the square root is unambiguous}
\]

\[U_1 = \begin{pmatrix} \sqrt{E-p_z} \\ 0 \\ 0 \end{pmatrix}, \quad U_2 = \begin{pmatrix} 0 \\ \sqrt{E+p_z} \\ 0 \end{pmatrix}, \quad V_1 = \begin{pmatrix} \sqrt{E-p_z} \\ 0 \\ -\sqrt{E+p_z} \end{pmatrix}, \quad V_2 = \begin{pmatrix} 0 \\ \sqrt{E+p_z} \\ 0 \end{pmatrix}
\]

*NOTE: very bad typo in Schwartz 2nd edition eq. (11.26)!\)

If \(E \gg m, \quad E \approx |p_z| \). For \(p_z > 0 \) (motion along \(+z \)-axis):

\[\psi_1(p) \approx \sqrt{E} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \psi_2(p) \approx \sqrt{E} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \psi_3(p) \approx \sqrt{E} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \psi_4(p) \approx \sqrt{E} \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

But \(\xi_+ = (1, 0) \) means spin-up along \(z \)-axis: this electron also has helicity \(\frac{1}{2} \), or has right-handed polarization in the traditional sense.

\(\Rightarrow \) for massless particles, chirality and helicity are the same

(right-handed spinor = right-handed particle)
What about antiparticles? A positron moving in the +z direction with spin-up along z-axis is still a right-handed antiparticle, but its spin is:

\[v^+_s(p) = \begin{pmatrix} 0 \\ \sqrt{E+p_z} \\ 0 \\ \sqrt{E-p_z} \end{pmatrix} \approx \sqrt{2E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \] which is pure \(\chi_L \). Helicity and chirality are opposite for antiparticles.

Think of \(\bar{u} \)'s and \(\bar{v} \)'s as column vectors and \(\bar{u} \equiv u^+ v^0, \bar{v} \equiv v^+ v^0 \) as row vectors.

Useful identities for what follows:

\[
\bar{u}^+_s(p) u^+_s(p) = u^+_s(p) v^0 \bar{u}^+_s(p) = \left(\begin{pmatrix} \xi^+ & \xi^+ \\ \bar{\xi} & \bar{\xi} \end{pmatrix} \right) \left(\begin{pmatrix} \xi \bar{\xi} & \xi \bar{\xi} \\ \bar{\xi} \xi & \bar{\xi} \xi \end{pmatrix} \right) \left(\begin{pmatrix} \xi^+ \\ \bar{\xi} \end{pmatrix} \right) = 2m \delta_{ss},
\]

Similarly \(\bar{u}^+_s(p) u^-_s(p) = \left(\begin{pmatrix} \xi^+ & \xi^- \\ \bar{\xi} & \bar{\xi} \end{pmatrix} \right) \left(\begin{pmatrix} \xi \bar{\xi} & \xi \bar{\xi} \\ \bar{\xi} \xi & \bar{\xi} \xi \end{pmatrix} \right) \left(\begin{pmatrix} \xi^- \\ \bar{\xi} \end{pmatrix} \right) = 2E \delta_{ss}, \text{ (note: not Lorentz-invariant!)}

Analogous for \(v \) (check yourself):

\[\bar{v}^+_s(p) v^+_s(p) = -2m \delta_{ss}, \quad \bar{v}^+_s(p) v^-_s(p) = 2E \delta_{ss} \]

We've been a bit fast and loose with matrix notation. The above were inner products: contract two 4-component spinors to get a number.

Can also take outer products to get a 4x4 matrix:

\[
\sum_{s=1}^5 u^+_s(p) \bar{u}^+_s(p) = \rho^+ \delta_+ + m \hat{1}_{4 \times 4} = \rho^+ + m \quad \text{(Feynman slash notation)}
\]

\[
\sum_{s=1}^5 v^+_s(p) \bar{v}^+_s(p) = \rho^- - m \quad \text{note the order of } \bar{u} \text{ and } \bar{u},
\]

and some spin index!
Classical vector solutions

Gauge-fixed Maxwell equations: \(\Box A_\mu = 0, \; \partial^\alpha A_\alpha = 0 \)

Again, look for solutions \(A_\mu = E_\mu(p) e^{-ipx} \). We did this in week 4. in a frame where \(p^\mu = (E, 0, 0, 0) \), we have \(E^{(1)} = (0, 1, 0, 0), \; E^{(3)} = (0, 0, 1, 0), \; E^f = (1, 0, 0, 1) \)

Recall \(E^f \) is unphysical because it has zero norm. However, we need to include it because \(E^{(1,3)} \) mix with it under a Lorentz transformation.

Explicitly, let \(\Lambda^\nu_\nu = \begin{pmatrix} \frac{3}{2} & 1 & 0 & -\frac{1}{2} \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \end{pmatrix} \). Can check \(\Lambda^\nu_\nu \gamma^\mu = \gamma^\mu \), also \(\Lambda^\nu_\nu p = p \), so \(\Lambda \) preserves \(p^\mu \). However, \(\Lambda^\nu_\nu E^{(1)} = (1, 1, 0, 1) = E^{(3)} + E^f \), so Lorentz transformations can generate the unphysical polarization.

But it turns out that in QED, all amplitudes \(M_\pm(p) \) involving an external photon with momentum \(p^\mu \) satisfies \(p_\mu M_\pm = 0 \). This is the Ward identity, and because \(E^f \propto p^\mu \), this unphysical polarization doesn't contribute to any observable quantity. (More on this later!)

Analogous to spinors, we can compute inner and outer products:

\[E^{(i)} \cdot E^{(j)} = -\delta^{ij} \]

\[\sum_{i=1}^2 E^{(i)} \cdot E^{(i)} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = -\gamma^{\mu\nu} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

where \(\overline{p} = (E, 0, 0, -E) \). But by the arguments above, the \(p^\mu \) will always contract to zero, so we can say

\[\sum_{i=1}^2 E^{(i)} \cdot E^{(i)} \rightarrow -\gamma^{\mu\nu} \] (again, sum over spins gives a matrix)