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Inthresholds L
Last time

,
we worked in the high-energy limit Exme

,
Me.

Let's now put the muon mass (186mer) back in and studs the

cross section For E just above 2 Mm -

Aside
:

this process is actively being investigated to produce enous
for a muon collider . Muons are the lightest rustable subatomic
-

particle
,
so if your beam energy is just right

, you can make

slow muons and nothing else to contaminate the final state

Since maxre , we can still approximate the et and e as massless
,

but now PG= /Ex , >SinG, 0, P> COSO) with = Em .

We can solve

For E
, by using &-rector algebra .

P, + Pr = Pa + Pr

=> <Pit Pa -Pal= Po

+ E- LEEz = Ma

=2 Ex
=

E/2 /makes sense
, every shared equally between at and eil

E2So = Fr , which is (p1 in our two-body phase space
formula

. Computing all the dot products as before gives (check!)

<IMP) = e[(1 + 2) + (1-= cor]
which reduces to our previous result for EC> 2mm .

-
Ipf

E2
-- E- <IMP>e

E

-Doing the angular integrals
, O 1- E(1+ IEE

The square roof is generic at kinematic thresholds
! For E = 2mm+A

,

the phase space suppresses the cross section likeE
n



In tre co Frame
,

the threshold every is Im 212 New I
Consider a position beam hitting a target of stationary

-

electrons
. In this Frame, Pit (we

,
0
,
0
,
01 and Pe (Fas

,
0
,
0
, Eins)(+0(wel)

We know that in the CM Frame
, (p,tP2)"= Fam

,
so compute in lab frame

(P, +P2
*
=

(metElas)" - Fas= 2 Elasme+wer Setting this equal to 2me :

2Elasve+me > Nen" =T Eas Ar-ve"
-

-> =4 Ger !
2me

Colliding beams much more efficient than fixed targets !
-

-

Andependence

Let's now understand the Itcos dependence motre way : instead of summing
over spins, we will use explicit choices of spinous.

First let's work in the high-energy limit
:

recall

u(0) =

(w) = /EP plYs
-Ep FE)I( -plI , I I

= ( ) - (1 : i) (s)(8) s

FVn= troven
,

and Norr : (oou) is block-diagonal.
So if 3

,
= (6) but 1s = (i)

,

u is a right-chiral spinor and vis a
left-chiral spiror , and thus IVu vanishes (if Paso for ooh handel

-

=> in the high-energy (massless) limit
,
QED exhibits

A

↓niconservation
:
left couples to left and right couples

to right
,
but there are no mixed helicity terms.

A
really, we should say "Chirality conservation .

"

But the terminology is standard.



8
In Fact, we already lenew his because the original Lagrangion was L
entawepAnt LTEML An : left and right couple separately to photon .

-

spir
- -Let's consider ->

e- 3 = (d) q = (,)
et

left-handed
right-handed

particle antiparticle=

right-Chiral right-chiral

spinor spina

Note
:

et has mometer in-2 direction
,

so spie-up along +2 is opposite direction
of motion

,
hence left-handed helicity-

-Tip - up - entr) - er(p !
) = Ex (0,

- 1) or 2(Ex)(d)
-

no louse vanishes = E((0,

-1)ri)( ! )
,

10
,
-1),! ((6)

,
(q - 1)! )(d)

,

(
,

-1(di)(i))
since Priz[0

=

E(0
,

- 1
,

- i
,
0)

can interpret this 1-vector as a circularly polarized virtual photon .

-

Now for muon part
of diagram .

Consider same spin states :

ei X

- La
⑦

~

- ----

-
ut

MR
I

oup is a Lorentz 4-rector . Under a rotation by t, it must transform

in +O E(0
,
-COS8

,
- i
,
sinG) .

Because it represents outgoing particles, we

need to take complex conjugate Li . e - Flip rolus of u and ~) : [S)(rspp)] = Ira Vulp)

Meet ~? (0 , -198, +i , Sint)-(0, - 1
,

- i
, 0)

=
- (1 + cost)

subscripts refer to petelicity
Note that this vanishes at 0 = T . forbidden G
-- -

-
- angular momentur

2- -> I
et

-
& &

et conservation !+ /2 +h/2 -/2 -k/2
-

S2= th S2 = -k



Our It cost in the spin-averaged matrix element L
came from adding up & halimmplitudes for the

different nonvanishing spin configurations :

Mereterint= -e(I+cost) = MeeLR

Mr + r
= Mine =-e(1-cost)

=> <11123
= I [Repal+ /Mrecal + /Merel /MaRR2lY
-
these are distinguishable final states

,

so we square amplitudes b summing

= e4(1 + cost)

See Peskin Sec . 8. 3 For a nice interpretation of the helicity

amplitudes in terms of currents and polarizations.

If the muoe were exactly massless
,
the helicity-violating

amplitudes RL-LL, etc., are exactly zero. But with a

finite we
,

the physical left-handed muon spinor contains

both left-chiral and right-chiral spirors; from the Lagrangian

term MeMIMp , we know that the opposite - chirality

component is proportional to the fermion mass
.

-

we can illustrate this as Follows !
ML

L m
MR-7Xu
t

#- "mass insection"
: sometimes convenient to think

MR
& -Wat of this as part of the Feynman diagram itself

= Mace (E)MRteR
-

MExplains Factors of Er in <IMI



keeping track of helicities and mass insections is usually ↳
more convenient in 2-component notation , but there is a

nice trick in P-component notation which automates

the calculation .

Define V = (* ) ("s" is a relic from old relativity texts
which used Lorentz indices M=133, 1)

The chirality projection operators are

P = E = (8) , Pr = I = (4) , which isolate be
S

top 2 and bottom 2 components of a spiror .

to make a spiror right-chiral , take a +Pau .

So we can write
the exec amplitude as

Fr n - (v
+

Pr)Vov-aU)

Useful Fact : US anticommates with all W
,
so moving Prpast 60th

Wo and represerves all siges . Furthermore
,
Pr: Pr (as appropriate

for a projection operator) so

↓Va = +202n= troua= Fra .e

-> can compute the sun over spins with

[IFVSE), = Tr) ---- -s -- )
, using someSa

942

additional trace identities involving V?

We will see these projectors mamore when we

study the weak interaction
,
which is intrinsically chiral .


