GR as an effective field theory L

 $Out(i_{12})$

 $6R$ as an effective field theo
Outline:
I. GR from the bottom up - the utline).
I. GR from the bottom up - the unique Lagrangian for mariers spin2

II. GREFT, perínelion of Mercury from dimensional anal 553 alone!

I. Massless Spin-2 particles have ² polarizations. ^A Lorentzinvariant description requires such a particle to be embedded in the smallest Lorentz rep-containing spin-2: $j_{1}=1$ and $j_{2}=1=$ \Rightarrow $(y_{j_{1}+1})(y_{j_{2}+1})=q$ symmetric traceless tensors $h_{\mu\nu}$. (Actually, nore convenient to start with trace included and project out, so $(0, 0) \oplus (1, 1)$.) From these 10 componets, we need to get down to 2 ph ysical polarizations, his will strongly constrain the kinds of Lagranging we can write clown. It's easiest to see the algorithm by starting First with spin-1 as ^a warm-up. a warm-up.
Am: 4 componets -> 3 (massive) -> 2 (massless)

Can split any f-rector into transverse and longitudinal $conports$: $A_{n}(x) = A_{n}(x) + \partial_{n}\pi(x)$ with $\partial^{n}A_{n}T = 0$ $(pnoF: S^m A_{\lambda} = \Box \pi$, so give A_{μ} , solve for π) (proof: $J^{\prime\prime}A_{\lambda} = \Box \pi$, so since A_{λ} , solve for π)
This decomposition is not unique but it exists, essentially defines Lis decomposition is not us
Lorenz gauge for AT.

\n
$$
\int_{0}^{1} \int_{0}^{1}
$$

 \geq

What about massless spin-1? If we try to set $m\ni 0$, be kinetic form for π varistes, but if A_n couples to matter, $K > A_{n} \int_{1}^{n}$ then under the AT/ π decompaion, $K > A_{n} \pi \int_{1}^{n}$. Bad things hoppen if interaction term is infinitely laser than
kiretic term. Only may out: $\partial_x \pi J^m$ vanistes after integrating by parts. OK, now to spin-2. Again, separate into transverse + long. :
hnv = hnv + dx π_{v} + dv π_{n} w/ dm hnv = 0. Contains 4 d.o.f. Also separate $\Pi_{m} = \Pi_{n}^{T} + \partial_{n} \Pi^{L} w / \partial^{n} \Pi_{n}^{T} = 0.$ I d.o.f. Most general L-dervative quadratic Lugranzian is. $\int = a h_{xy} \Box h^{xy} + b h_{xy} \Box^2 J^{xy} h_{x}^{y} + c h \Box h + d h \Box^2 J^{xy} h_{xy}$ $+ m^{2}(x h_{xy}h^{xy} + y h^{2}) \approx 16 = h^{2}h^{2}$ Sume trick as before: after inseting transverse decomposition, look for terms involving π^L : has I ldnown h > 2 1774 $m^{2}(x h_{xx}h^{xy}+yh^{2})$) $m^{2}(2x \partial_{x} \partial_{y}\pi^{2}\partial^{x}\pi^{2}+2y \iint \pi^{2}D\pi^{2})$

= 4m² (x+y) π^{2} π^{2} π^{2} up to i.b.p.

Same problem same cure, need xxy=0 to avoid ghosts.
Similar reasoning fixes relative coefficients of other terms. $\lambda'_{FP} = \frac{1}{2} h_{av} D h^{av} - \frac{1}{2} h_{av} \partial^2 \partial^4 h_{\alpha}^{\nu} + h \partial^2 \partial^{\nu} h_{av} - \frac{1}{2} h D h + \frac{1}{2} m^2 (h_{ab} h^{av} h^{2})$ Firs-Pauli Lascangian for Massive Spin-2. Stückelberg trick: all terms but moss term are invituader h_{xy} h_{yy} + $\partial_x x_y$ + $\partial_y x_y$, let π_{xy} π_{xy} and we are left with $10-4-4=1$ d.o. f's in h_{uv}^T and $4-1=3$ d'arts in π_{n_1} leaving $2r3=5$ for massive spin-2.

If we binding set
$$
m=0
$$
, we get
\n
$$
\begin{array}{lcl}\n\mathcal{A} & = & \frac{1}{2} h_{xx} \mathbf{D} h^{-1} - \frac{1}{2} h_{xx} \mathbf{D}^T \mathbf{S}^T h_{xx} + h \mathbf{D}^T \mathbf{S}^T h_{xx} - \frac{1}{2} h \mathbf{D}h \\
which is linearized, because $m \mathbf{D}^T \mathbf{A}^T \mathbf{B}^T \mathbf{A}^T \mathbf{A}^T \mathbf{B}^T \mathbf{A}^T \mathbf{A}^T$
$$

5 II. GR as an EFT. L Let's be schematic and ruthlessly suppress indices. Rieman tensor has two deivatives RuvagvGbp[phas), ^S analogous to - U ⁼ exp(Enta) CEH=MpTr [Rur] > Lavirai=FiTr [DUT DU] Each term has I derivatives and on infinite number of powers of h. As with chinal Lagengion, should write down all terms consistent with symetry (in this case, diff invariance) : C ⁼ ettg) (MpiR+L, R2 + LRucR"+yRoRevewt ...) ^L u ^M ²² ²⁴ total deiative, disappears in petubation they C- (IhDL+ Dr.) ⁺ Li)thDn+hD- mp, Just Like Chiral Lagrangian, this theory intrinsically contains higher-dimension terms even with only 2derivatives! Non-recormalizable - => theory must break down land needs a UV completion) at EmMpi . But below that, perfectly predictive ! Example : Let's look at effects offith" term. We canuse Classical field perturbation theory : equation of motion is Dh-Ep B(42) -EpT , use Tis he energy-momentum terror of ^a classical source. 10) Lowest-order solution is h= T; for = e531, this is just the Neutrin potential =Empt

Pechubitive solution:
\n
$$
\begin{aligned}\nD(h^{(n)} + h^{(n)}) &= -\frac{1}{n!}T + \frac{1}{n!}D(h^{(n)}h^{(n)})^T \text{ where } h^{(n)} \circ \theta(\frac{1}{n!}) \\
D(h^{(n)} &= \frac{1}{n!}D(\frac{1}{n!} - \frac{1}{n!}T^T) - \theta(\frac{1}{n!}T^T) \\
&= 2h^{(n)} = \frac{1}{n!} \frac{1}{n!}T^T \sim \frac{1}{n!} \left(\frac{n}{n!} \frac{1}{n!}\right)^2 \\
D(h^{(n)} &= \frac{1}{n!} \frac{1}{n!} T^T \sim \frac{1}{n!} \left(\frac{n}{n!} \frac{1}{n!}\right)^2 \\
N^{(n)} &= \frac{1}{n!} \frac{n}{n!} \frac{1}{n!} T^T \sim \frac{1}{n!} \left(\frac{n}{n!} \frac{1}{n!}\right)^2 \\
N^{(n)} &= \frac{n}{n!} \frac{n}{n!} \frac{n}{n!} \frac{1}{n!} \therefore \text{ Take } m = M_0, C = \text{dist, for some diagram,} \\
\frac{h^{(n)}}{h^{(n)}} = \frac{n}{n!} \frac{n}{n!} \frac{n}{n!} \frac{1}{n!} \sim \frac{1}{n!} \text{dist, so } \theta = \text{dist, for some other, and there, } \\
\frac{h^{(n)}}{h^{(n)}} = \frac{n}{n!} \frac{n!}{n!} \frac{1}{n!} \sim \frac{1}{n!} \frac{1}{n!} \frac{n!}{n!} \sim 10^{-7}, \text{ which is the periodic solution, which } \\
\frac{2\pi}{n!} \frac{h^{(n)}}{n!} = 0.8 \times 10^{-7}, \text{ Anhoarity, close,} \\
N^{(n)} &= \frac{n}{n!} (\frac{1}{n!} - 128\pi^2 \frac{h^{(n)} + 1}{n!} T^{(n)} + \cdots), \text{ that there, and by, } \\
M^{(n)} &= \frac{n!}{n!} (\frac{1}{n!} - 128\pi^2 \frac{h^{(n)} + 1}{n!} T^{(n)} + \cdots), \text{ that there, and by, } \\
M^{(n)} &= \frac{1}{n!} (\frac{1}{n!} - 128\pi^2 \frac{h^{(n)} +
$$

 \overline{I} n