GR as an effective field theory

Outline;

I. GR from the bottom up - the unique Lagrangian for massless spin-2

[]_____

I. GREFT, perihelion of Mercury from dimensional analysis alone!

I. Massless spin-2 particles have 2 polarizations. A locatzinvariant description requires such a particle to be embedded in the smallest Lorentz rep- containing spin-2: ji=1 and j==1 => (2j,+1)(2j,+1)=9, symmetric traceless tensors hav. (Actually, more convenient to start with trace included and project out, so (0,0) (1,1).)
From these 10 components, we need to set down to 2 physical polarizations; (Lis will strongly constrain the kinds of Lagrangians we can write down. It's easiest to see the algorithm by starting first with spin-1 as a warm-up.

An i. 4 components \rightarrow 3 (massive) \rightarrow 2 (massless) Can split any 4-vector into transverse and longitudinal components: $A_{n}(x) = A_{n}^{T}(x) + \partial_{n} \pi(x)$ with $\partial^{T}A_{n}^{T} = 0$ (proof: $\partial^{T}A_{n} = \Box \pi$, so given A_{n} , solve for π) This decomposition is not unique but it exists: essentially defines Lorenz gauge for A^{T} .

if is proted we don't know about gauge invariance and [
want to find a sessible Lagrangian for An.
Most general 2-derivative Lagrangian is (recall Hur3):

$$\int = a A^{m} \Box A_{n} + b A^{m} \partial_{n} \partial_{n} A_{n} + m^{n} A^{m} A_{n}$$
(up to terms which vanish after integration by parts)
Plugging in $A = A^{T} + \partial \pi$. After some integration by parts,

$$\int = a A^{m} \Box A_{n}^{T} + m^{T} (A^{mT} A_{n}^{T}) - (a+b) \pi \Box^{T} \pi - m^{T} \pi \Box \pi$$
(dain: the theory is sick if $a+b\neq 0$.
(ampute π propagator in momentum space: $\Box \Rightarrow -k^{T}$, so

$$\Pi_{\pi} = \frac{1}{2} - \frac{1}{(a+b)k^{T} + k^{m}} = \frac{1}{2m^{m}} \left[\frac{1}{k^{m}} - \frac{(a+b)}{(a+b)k^{m} - m^{T}} \right]$$
=) π is actually two fields but one has a warg-sign
propagator: a gbost. After quantation (earls to reputive-norm
states and non-unitary evolution; but!
only warg and is to have $a+b=0$, which can be written
in the more suggestive may with $a=-b=\frac{1}{2}$, $m^{m} \Rightarrow \frac{1}{2m^{m}}$
 $\int = -\frac{1}{4} F_{m}F^{m} + \frac{1}{2}m^{m}A_{m}A^{m}$
We can now declare that A^{T} and π have a field by grave symmetry:
 $A_{m}^{T} \Rightarrow A_{m}^{T} + \partial_{m}A_{m}$ ($A_{m}^{T} + \partial_{m}\pi^{T}$).
Only two propagatory modes in A_{m}^{T} (transverse + gauge ins.)
the third (longituding) mode is introduced explicitly with π^{T} .

What about massless spin-1? If we try to set m=0, [3] be kinetic term for TI vanishes, but if An couples to matk-L') And , then under the ATIT decomposition, L') DuTIJ. Bad things happen if interaction term is infinitely lase than kiretic term. Only way out: D.T.J. Varishes after integrating by parts. => Jm J = 0, Massless spin-1 coupled to matter => conserved J, OK, now to spin-2. Again, separate into transverse + long. : how = how + do The + do The w/ dm how = 0. Also separate TI = TI + du TI w/ du TI = 0. I do f. Most general D-derivative quadratic Lugranzian is . $\mathcal{L} = a h_{nv} \Box h^{nv} + b h_{nv} \partial^{2} \partial^{\alpha} h_{\alpha} + c h \Box h + d h \partial^{2} \partial^{\nu} h_{nv}$ $+ m^2 (Xh_{\nu}h^{\nu} + yh^{\nu}) m/h = h^{\alpha}a$ Some trick as before after inseting transverse decomposition, look for tem involving TT-: how > 20000Th, h>2174 $m^{2}(x h_{u}h^{-\nu} + yh^{2})) m^{2}(2x \partial_{u}\partial_{u}\pi^{L}\partial^{2}\partial_{u}\pi^{L} + 2y \square\pi^{L} \square\pi^{L})$

= $4m^{2}(x+y)\pi^{2}D^{2}\pi^{4}up$ to i.6.p.

If we blindly set
$$m=0$$
, we get $\left(\frac{4}{4}\right)$
 $A = \frac{1}{2}h_{nv} \Box h^{-v} - \frac{1}{2}h_{nv} \partial^{-}\partial^{+}h_{nv}^{+} + h \partial^{+}\partial^{+}h_{nv} - \frac{1}{2}h \Box h$
which is linearized vacuum Einstein-Hilber; we are on the syst
track! But muss tern give ΠT a kinetic term. Need to make
sure this disappears when how couples to other fields.
 $\int Dh_{nv} T^{+v} = D \int d = (\partial_{+} \pi_{v} + \partial_{v} \pi_{v})T^{-v} = D \partial_{-} T^{+v} = D$.
But this is not crough: (onside $d_{1} = \frac{1}{2}hd$.
 $\int A_{1} = \partial^{+} \pi_{-} d$. If we let $d = \partial t + \pi_{+} \partial^{+} d$ and mulity d to
 $A_{2} = \frac{1}{2}h \pi_{-} \partial^{-} d + (\partial^{+} \pi_{-})(\pi_{v} \partial^{+} d)$.
But now there are extra terms;
 $\int A_{2} = \frac{1}{2}h \pi_{-} \partial^{-} d + (\partial^{+} \pi_{-})(\pi_{v} \partial^{+} d)$.
To cancel these need to mulity transformation of h ,
which means alking more terms $d_{-} D h^{-} d_{-} d$

I. GR as an EFT.
Let's be Schemitic and rulhicssly supposes indices. Rieman terms has two derivatives
$$R_{MVR,p} \sim \frac{1}{2} \frac{1}{2} Cr(\frac{1}{m_1} hrst)$$
,
analogous to $U = crp(\frac{1}{m_1} organ)$
 $\mathcal{L}_{EH} = M_{H}^{*} Tr(FRui) \quad C \Rightarrow \mathcal{L}_{CLIONI} = F_{T}^{*} Tr(DU+OU)$
Each term has 2 derivatives and an infinite number of powers of h.
As with chiral Legrangian, should write down all terms consistent with symmetry (in trick case, diFF invariance):
 $\mathcal{L} = \int det(-g) \left(M_{PL}^{*} R + L, R^{*} + L_{2} Rav R^{*v} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int det(-g) \left(M_{PL}^{*} R + L, R^{*} + L_{2} Rav R^{*v} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int det(-g) \left(M_{PL} R + L, R^{*} + L_{2} Rav R^{*v} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int det(-g) \left(M_{PL} R + L, R^{*} + L_{2} Rav R^{*v} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int det(-g) \left(M_{PL} R + L, R^{*} + L_{2} Rav R^{*vr} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int det(-g) \left(M_{PL} R + L, R^{*} + L_{3} Rav re^{vvr} + L_{3} Rav re^{vvr} + ... \right)$
 $\int t = \int terms consistent terms consistent dimpers in perturbies Raver
 $rest like Chiral Legrangian, this theory intrinsically contains
higher-dimension terms even with only 2 derivatives: non-renormalization
 $rest like Chiral Legrangian, the stear (and needs a UV completion)$
 $rest Example: let's look at effects of $\frac{1}{m_1}$ Dh' term. We can use
 $Classical field perturbitin theory:
equetion of motion is $\Box h^{*} = \frac{1}{m_1} \Box T$; for $T = m T'r$; the
 $every - momentum term of a classical source.$
Lowest-order solution is $h^{*} = \frac{1}{m_1} \Box T$; for $T = m T'r$;
 $tris is just he Newlown pictual $h^{*} = \frac{m_1}{m_1} \Box$.$$$$$

Perturbative solution:

$$D(h^{(0)} + h^{(1)}) = -\frac{1}{m_{1}}T + \frac{1}{m_{1}}D(h^{(0)}r_{h}^{(0)})^{-1} \quad \text{where } h^{(1)} = O(\frac{1}{m_{1}})$$

$$Dh^{(1)} = \frac{1}{m_{1}}D(\frac{1}{m_{1}}+T^{-1}) + O(\frac{1}{m_{1}})^{2}$$

$$This is just the position-space classical version of Feynman diagons:
$$h^{(0)} = \frac{1}{m_{1}}\frac{1}{D^{2}}T^{-1} - \frac{1}{m_{1}}\left(\frac{m}{m_{1}}+\frac{1}{D}\right)^{2}$$

$$This is just the position-space classical version of Feynman diagons:
$$h^{(0)} = \frac{1}{m_{1}}\frac{m}{m_{1}}\frac{1}{T}. \quad Take m = M_{0}, r = dist. 6tw. sin ad Perum
$$\frac{h^{(0)}}{m_{1}} - \frac{m}{m_{1}}\frac{1}{m_{1}} - 10^{18}\frac{1}{10^{45}} \sim 10^{-7}, \text{ which is he perihetion shiff!}$$

$$\frac{43''(arthy)}{2\pi/ssdy} = 0.8 \times 10^{-7}. Amazingly close!$$
What about higher-order terms L? Ca solve exectly w/L, and h:

$$h^{(r)} = \frac{m}{m_{1}}\left(\frac{1}{T} - 128\pi^{+}\frac{L_{1}t_{1}}{m_{1}}\frac{T}{T}\right) + Suftrate = 2 unobservate.$$
There are also genuine quantum effects:

$$meakerim surve teory, get a (n(p^{2})) (antribution which can time
(a could by counterterms. Fourier-transform: (n(p^{2})) = \frac{1}{10}(cf. Uchling plan)$$

$$h(r) = \frac{m}{m_{1}}\frac{1}{T}\left(1 - \frac{m}{m_{1}} - \frac{127}{30\pi^{-}}\frac{1}{m_{1}}\frac{1}{T}\right) = 128\pi^{-}\frac{L_{1}t_{1}}{T}$$$$$$$$

1 0