Relativity review

Equating tree

\nThis class are "natural units" is
$$
t = C = 1
$$
. In the ST
\nSystem of units, there are three dimensionsful quantities
\n(mass, length, time), but relatively mixcs length and time, and RM
\nmixes energy and time from E= two. So natural units mate these
\nConversions easy by having only one dimensional quality,
\nmass (or energy, by E= nc²). Dimension, will be computed in
\npower of mass, and denoted $(\cdot \cdot \cdot) = d$.

\nEx. [m] = 1

\n[E] = [mc²] = [m] = 1

\n[E] = [m²] = [m] = 1

\n[E] = [m²] = [m] = 1

\n[E] = [m²] = [m²] = 1, [m

 $t = 6.58 \times 10^{-32}$ MeV.5 Two useful conversion factors to get back to $5I$. $\hbar c = 197$ MeV. f_{m} Recall that Lorentz transformations are the set of linear coordinate transformations that leave the spacetime metric invariant. In this course, metric is $\gamma_{uv} = \gamma^{uv}$ diag $(i, -1, -1, -1)$ so timelike I-rectors have positive invariant mass. So timelike 4-vectos have positive invariant mass.
A loratz "boost" along the 2-axis by velocity (13/<1 can be A lonctz "boost" alo
writter as a matrix $\Big($ as a matr
Y O O Y B
O I O O $\Lambda = \left(\begin{array}{rrrr} Y & \mathcal{O} & \mathcal{O} & Y \mathcal{P} \\ \mathcal{O} & I & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & I & \mathcal{O} \\ Y \mathcal{A} & \mathcal{O} & \mathcal{O} & Y \end{array} \right)$ C 0 I ⁰ where v $=\frac{1}{\sqrt{1-3^2}}$ γ s o O ov

In this class, all transformations will be active, so acting on the 4-mometur of a particle at $Test, p^*=(m,0,0,0)$, gives $p^* \rightarrow (\gamma_{\cdot}, \, o, o, \gamma_{\cdot})$. If $\beta > 0$, p^* is boosted to have $p^* > 0$.

We can extract a couple useful facts from $\lfloor 2 \rfloor$ Calculation:

- ϵ $E = Ym$, so to find the Lorentz factor for a massive particle, just divide its eners by itsmass. uple useful facts from this
d the Lorentz factor for a massive
le its enegy is its mass.
= $\frac{|\vec{P}|}{E}$. In this course we will almost
b, and will use γ exclusively.
- \cdot $|\vec{\rho}| = \gamma_{\beta} \wedge \gamma_{\beta}$ so $\beta =$ $|\vec{p}| = \gamma \beta n$, so $\beta = \frac{|\vec{p}|}{E}$. In this course we will
never care about β , and will use γ exclusively.

 $Recall \rho^2 \equiv \rho \cdot \rho \equiv (\rho^0)^2 - (\rho^1)^2 - (\rho^3)^2$ is invariant; same in any frame. Comparing rest-frame p^{\sim} = (m, \vec{o}) to some other Frame $p^{-1} = (E, \bar{p})$ gives $E^2 = |\bar{p}|^2 + m^2$ which we will use all the time.

Massless particles (e.g. photons) are described by lightlike Arvectors with $p^* = 0$, thus $E = |\overline{p}|$ (and $\beta = 1$).

An easy way to immediately see that a quantity is Lorentzinvariant is to use index notation. A Loretz transformation M is a 4×4 metrix with entries $M^{\prime\prime}$, m, v = 0, 1, 2, 3 M^{\vee} 0 | 2 } $\begin{array}{ccccc} a & b & b & 3 \\ b & y & 0 & 0 & \gamma \beta \end{array}$ in labels row, Vlabels column. $EX.$ $\begin{pmatrix} M & N & O & O & V/3 \\ O & 1 & O & O \\ O & 1 & O & O \end{pmatrix}$ M labels row, V labels. $\begin{array}{c|c} 1 & 0 & 0 \\ 2 & 0 & 0 \end{array}$ $\begin{array}{c} \begin{array}{ccc} 1 & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \end{array} & \begin{array}{ccc} \Lambda_3^{\circ} &= \Lambda_3^{\circ} &= \Upsilon\beta, \ \text{etc.} \\ \text{Check indices } & \text{Cun } & & \text{fron } & \text{or } & \text{to } & \text{c.} \end{array} \end{array}$ Latin indices i,j,k , etc. and from 1 to 3 Contravaviant vectors V transform by matrix multiplication: λ V M $\stackrel{\wedge}{\longrightarrow}$ \wedge $\stackrel{\omega}{\sim}$ V' (\equiv \wedge V , matrix multiplication is "northeast" contraction) Note Einstein summation convertion: sum over repeated upper/lower indices. Covariant vectors $W_{\mathcal{M}}$ transform with the transpose of Λ . $\overline{\Lambda}$ variant vectors W_{μ} tomstern asity the transpose of \wedge .
 $W_{\nu} \stackrel{n}{\longrightarrow} W_{\mu} \wedge^{\bullet}$ ($\equiv W \cdot \wedge^{\top}$, contract bottom matrix index = $=$ Column) Can raise and lower indices (i.e. convert covariant to contravariant) by using the metric: $V''' \equiv \gamma^{\mu\nu}V_{\nu}$, W_{μ} : $\gamma_{\mu\nu}W^{\nu}$. This is nice because we never have to keep track of transposes explicitly.

\n**IDENTIFY and SET UP: Theorem 1.3** \n

\n\n**EXECUTE:**
$$
\frac{13}{100} = \frac{1}{100} \times \frac{1}{100}
$$

Tensus have most than one index: each upper index transforms 14
\nwith a factor of N, each low index w1/T
\n6.2. T_{ny} =
$$
\Lambda_m^{\alpha} \Lambda_v^{\beta}
$$
 T_{xa}
\n5.90 = $\Lambda_B^{\alpha} \Lambda_v^{\beta} \Lambda_v^{\gamma}$ 5.80
\nWith index notation, we know that a quantity like
\nT_{uv} T^{av} is invariant under locuta transformations just by looking at it.
\n0.90 = last piece of notation;
\n $\lambda_v \equiv \frac{3}{3x^n} \equiv (\frac{3}{9}, \frac{3}{9}, \frac{3}{9})$ is "a-trally" a covariant vector,
\nwhile x^m is "natural," continuous"