Intro to group theory and So(3,1)

multiplication

Over le next 3 weeks we will lear what all trese words mean.

inverting defining relationship:
$$(\Lambda^{T} \mathcal{Y} \Lambda)^{-1} = \mathcal{Y}^{-1}$$

=> $\Lambda^{-1} \mathcal{Y} (\Lambda^{T})^{-1} = \mathcal{Y}$ since $\mathcal{Y}^{-1} = \mathcal{Y}$.

Want $(\Lambda^{-1})^{T}$ on left, so left-mitsply both sides by $\eta \Lambda$ and $\begin{bmatrix} 3 \\ \gamma \eta h t - multiply by \eta \Lambda^{-1} \end{bmatrix}$ $(\eta \Lambda)^{T} \Lambda^{-1} \eta (\Lambda^{T})^{-1} (\eta \Lambda^{-1}) = (\eta \Lambda) \eta (\eta \Lambda^{-1}) => (\Lambda^{-1})^{T} \eta \Lambda^{-1} = \eta$ since $(\Lambda^{T})^{-1} = (\Lambda^{-1})^{T}$. (Losure : [Hw]

These 4x4 matrices are also a representation of the group: since they nere used to define the group, we call it the defining representation. It acts on 4-vectors x' as M'v x''. What about other representations?

 Trivial representation. All elements of SO(3,1) map to Ne number 1. This is the "do-nothing" representation and acts on scalars (numbers)

What about acting a \sum -component vectors? Fromponent? To do this systematically, we need the concept of Lie algebras. These are another mathematical collection of objects obtained from a group by looking at gray elements infinitesimally close to the identity. Let's try writing $\Lambda = I + \epsilon X$ and expand to first order in ϵ . $\eta = (I + \epsilon X)^T \eta (I + \epsilon X) = I q I + \epsilon (X^T \eta + \eta X) + \Theta(\epsilon^{\circ})$ $= \sum_{i=1}^{n} X^T \eta = -\eta X$ defines Lie algebra $2\sigma(3,1)$ Up to maltiplication by η , this lasts like the condition for an antisymetric 4x 4 matrix, which has $\frac{4\cdot3}{2} = 6$ independent parameters. Thus the dimension of $2\sigma(3,1)$ (and SO(3,1)) is 6.

Unlike
$$SO(3,1)$$
, $SO(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $X, Y \in SO(3,1)$, then
 $a X + 6 Y \in SO(3,1)$ for any real numbers a, b .
It has one additional ingredient, called the Lie bracket or commutator:
 $i F X, Y \in SO(3,1)$, then $[X, Y] \equiv XY - YX \in BO(3,1)$
 $PooF: ([X,Y])^T g \equiv (XY - YX)^T g$
 $= Y^T X^T g - X^T Y^T g$
 $= Y^T (-g X) - X^T (-g Y)$
 $= g(YX - XY)$
 $= -g[X, Y]$

Proof:
$$([X,Y])^{T} g = (XY - YX)^{T} g$$

 $= Y^{T} X^{T} g - X^{T} Y^{T} g$
 $= Y^{T} (-\eta X) - X^{T} (-\eta Y)$
 $= q (YX - XY)$
 $= -\eta [X,Y]$
Since taking brackets keeps us in the Lie algebra, we can choose a basis T^{i} and write $(T^{i}, T^{i}] = f^{ijk} T^{k}$, where f^{ijk} are called structure constants, and the whole equation is a Commutation relation.
For 20(3,1), it's earliest to split the basis into infinitesime (boosts and infinitesimal rotations, and to allow owned complex coefficients
Let $J = (J_{X}, J_{Y}, J_{Z})$ be infinitesimal rotations around $x, y, and z$ axes
respectively. Ex. $J_{X} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
 $\vec{k} = (K_{X}, K_{Y}, K_{Z})$ are infinitesimal boosts along $x_{i}y_{i}z$

(ommutation relations. [Ji, Jj]=iEijkJk, [K:, K;]=-iEijkJk, [Ji, K;]=iEijk Kk [ook Familia? two boosts give a rotation [HW]

The fact that J and K get mixed with each other is arrowing.
But we have one more trick up our sheare: define a new basis

$$J^{+} = \frac{J + iR}{2}$$
, $J^{-} = \frac{J - iR}{2}$
In this basis, the commutation relations are
 $[J_{1}^{+}, J_{2}^{-}] = iE_{12} J_{X}^{+}$, $[J_{1}^{+}, J_{2}^{-}] = 0$.
Two identical copies of the same Lie algebra which for their?
So representation theory of do(3,1) boils down to representation theory
of J^{+} and J
Plut you already from the argues from quantum mechanics!
2d rep: J: $\equiv \sigma_{1}$, fault matrices $(spin - \frac{1}{2})$
3d Ref. A: \equiv infinitesimal 3d rotations $(spin - 1)$
:
Using raising and lowering operators, can have any half-integer
Spin representation of dimension $2y+1$
=7 Pick a half-integer j labeling J and another half-integer j'for J',
and this defines a rep. of the Lorentz group (j, j') of
dimension $(2j+1)(x_{2}^{+}+1)$. Some examples:
 $\frac{j}{j} = 0$.
 $\frac{j}{j} = \frac{j}{j} = \frac{j}{j}$, $\frac{j}{j}$ and $\frac{j}{j} = \frac{j}{j}$.
 $\frac{j}{j} = \frac{j}{j}$ and $\frac{j}{j} = \frac{j}{j}$ and $\frac{j}{j}$ and $\frac{j}{j}$ and $\frac{j}{j}$.
 $\frac{j}{j} = \frac{j}{j}$ for $\frac{j}{j}$ and $\frac{j}{j}$.
 $\frac{j}{j} = \frac{j}{j}$ and $\frac{j}{j}$ and another half-integer j' for J' ,
 $\frac{j}{j} = 0$.
 $\frac{j}{j} =$

Representations of the Poincaré group

The world has more symmetries than just Lorentz transformations: translations in space and time. These translations form a group too; \mathbb{R}^4 , since we can write $x^m \rightarrow x^m + \lambda^m$ as a A-vector.

Combine translations with rotations and boosts? Have to be
a bit careful because translations and rotations don't commute.
Correct structure is a semi-direct product: if x and B
are translations, and A, Az are Larentz transformations,
$$(x, A_i) \cdot (B, A_2) \equiv (x + A_iB, A_iA_2)^{x}$$
 Usual multiplication
 $(x, A_i) \cdot (B, A_2) \equiv (x + A_iB, A_iA_2)^{x}$ Usual multiplication
 $(x, A_i) \cdot (B, A_2) \equiv (x + A_iB, A_iA_2)^{x}$ Usual multiplication
 $(x, A_i) \cdot (B, A_2) \equiv (x + A_iB, A_iA_2)^{x}$ Usual multiplication
 $(x + A_iB, A_iB,$

$$\begin{split} \Lambda &= | + \epsilon X \longrightarrow \Lambda_{v}^{*} = \delta_{v}^{*} + \epsilon w_{v}^{*} \quad (w \text{ are entries of matrix } X) \\ \Lambda_{m}^{T} \Lambda_{m}^{T} \Lambda_{v}^{T} \Lambda_{v}^{T} \eta \sigma = \eta_{mv} \\ P[ug in expansion of \Lambda, isolate $\theta(\epsilon)$ terms as before:

$$(J_{m}^{P} + \epsilon w_{m}^{P})(J_{v}^{o} + \epsilon w_{v}^{o}) \eta_{p\sigma} = \eta_{mv} \\ \eta_{hv}^{T} + \epsilon (J_{m}^{P} w_{v}^{T} + J_{v}^{T} w_{m}^{P}) \eta_{p\sigma} + \theta(\epsilon^{2}) = \eta_{hv} \\ (use \eta_{p\sigma} to (outr indices)) + \epsilon (J_{m}^{P} w_{pv} + J_{v}^{T} w_{\sigma m}) = 0 \\ = \sum [w_{mv} + w_{vm} = 0], so w_{mv} \text{ is an antisymmetric tensor} \\ w/6 independent components: 3 boosts and 3 rotations. \end{split}$$$$

6