
Now, consider some state lens which is an eigenvector of #

per w/eigenvalue K2. We will see nextweek that such states

describe particles of definitemomenture.
Practsas lekn =m,

so indeed, for a massive particle, or acts as the identityon

all states (12) related by Lorate transformations.

Boostto a frame where le =(m,0,0,07,50 P0(k) =M1k), Pilk) =0.

Then Wilk) =Itino:MP4P°1K] =m (tonMin) (1) =
-mI(k)

As you recall from GM, J =5.9 =s(st1) is indeed a multiple
of the identity with coefficient given by the particle's spins,so
the same should hold true for WI=-(win): -m25.5.

Note:this only works in m>0!! Will come back to m
=

0.

Claim:WWWis a Casimir, i.e. commutes withall per and Mar

Proof:We have already shown [W,PT=0, so clearly (hYP] =0.

ButW"is Lorentz-inumit
(no free indices), so the action of

an infinitesimal Lorentz transformation
mustvanish:

(WY, MN] =0.

If this argument is too slick for you, for HW you will

check explicitly that2WYMW] =0 using the Poincarealgebra.

-

interpretation of Casimirs.
t

Recall From the second lecture thati=FF, IIEI

=>I =I
++y-

Reps of Loretz group are labeled by half-intest spins
i,, in, so this is like adding spins in km. I can have

spins j =1j,jz), bijal,..-jitjz, wik5=j(j +1)
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But Wh is a Casimir operator so it only takes are value 01

each irreducible representation; which one?

Some easy cases. (0 , 0) rep. has ;
,
= 11 = 0 Soj

= 0
:

truse are
-

spito particles (Scalars)

(I , 0) or (0, 5) reps have j ,
=

I and j
= O o vice-versa. again

,

Only one possible value of j , j
= I , so these are spirticles

more interesting:
-

CI , z) rep . has jiT E , so j = / or 0
.
In GFT

,
this will

-

describe spin-I particles , but we will need an additional constraint
-

in the equations of motion to project out the j = 0 component.

-------

What about particles? P= 0 , so we can't so to a from

where R
*

= (1
,
0
,
0
,
0
.
The best we can do is to take to R and

pick a direction since (E) = 10
:
take le

*

= (R
,
0
,
0
, k) .

Can show that i generates the set of transformations

which leave " Fixed (this is known as the Aeroup)
This is clear for eF0 Since I generates rotations, which leave
the zerth component alone and don't affect & = E .

For m = 0
,
things are more subtle · Clearly rotations in the

xy-place preserve E
= K2

,
and No and Wy contain Mir which

generates these rotations. Note
Rat We = 0 => k(W +Will> = 0

,

So Wolk) =-Wylk). Can also show [Wr
,
W
,] In = 0

·
(HW]

But there are also combinations of boosts and rotations that preserve:
can show that Wille>= Will> = 0. So WeWIR) : (/WO)-(wi)Y /17
=O
,
and eigenvalues of Waren't enough to tell us

about spin .



↳
If we raise an index, W9)=Wlk), so WIKL=XP-R)

for somed.

Consider Wo =Itisko Mijp= -I toinMispk= +I.P =xPo.

Since Polk) = 1P11K) for massless particles, solve for 1.

X =E= J.P. This is a new spin quantumnumberIP1
called recity:projection of spin along direction of motion.

It is toretz-invariant for massless particles! I = J is

quantized in half-integes, therefore so is 1. Examples.

(0,0) rep!( =0 so x =0 => spin-o.

(I,0) or (0,1) ps! =tso(=It, and x =I. 130 meas

"spin-up along direction of motion,"which we call right-handed. For me,

this property is invariant under boosts.

(I,t) rpix =

- 1,0(x2),or +) =7 Spin, butD =0 states are uphysical.

Compared to30, there is an extra

X =0 statewhich we will have to get
rid of with gauge invariance.
-



↳
Unitary representations and Lagrangian
-

We have seen how to classify representations of the Poincaré

group by mass and spin . We now want to write down equations
of motion for elementary particles, which are invariant under

Poincaré transformations and obey the rules of quantum mechanics.

We could start with the Schrodinger equation,

it # It
,
t> = Ñ- It

,
t>

but there are two problems :
- time is treated separately from space : tis a variable but I is

an operator. This is explicitly not Lorentz invariant_

- we can't describe particle creation ! E. g. in e.
*e- → rr

,

an electron and a positron are destroyed and two photons

are created
. In non - relativistic QM

,
conservation of probability

forbids this
.

The solution to both these problems is (perhaps not obviously )

quenid5. a collection of quark
- operator at each point

in spacetime which evolve in the Heisenberg picture as

¢ (✗m) =
eiÑᵗ¢ ( o, E) e-

i # +
← her

,

I is just a label, got an operato-

The Hilbert space basis is states of fixed particle number
,

and the field operators 0^1×7 create particles at ✗
"
- Ct, E) .

Relativistic invariance is guaranteed by ensuring that it /built
out of ¢ and other fields ) transforms appropriately Under Poincaré.
We will bake this in from the beginning by constructing Lazying

,

Poincaré- invariant functionals of quantum Fields
,
from which we

can derive equatÉÉÉ Euler-Lagrange

equations. In this course
,
we will deal almost exclusively with

the fields / rather than the Hilbert space they act on ) so we will

drop the hats on ∅.
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In QM

,
symmetries are implemented by mipato-s .

We will justify the following transformation rules Fo- quantum fields y :

(ga)

spacetime la
,
A) : ecx ) → 44×1=4+(9^194) Uca, a) = Rcn) -

y /a-
'
k-al)

Énututih -
explicit implementation

of Poincaré transformation by a representation
by unitary operators matrix R and a
acting on Hilbert space
-

Shift of coordinates
in the argument of 4

Internal I 41×1 ↳ Y' (x ) = Ut# 41×7 Ulg ) = Rlglqcx)
^

argument of 4 is
unchanged for in symmetries

.

will see that internal symmetries are related to (generalized ) charged .

Recall a unitary operator U satisfies U +4=11
,
so U'

-

= a-
'

.

We will use

daggers and inverses interchangeably when dealing
with unitary operators .

Coleman - Mandala theorem : a consistent relativistic quantum theory

!^ " '7
have the "me"" of Poincaré times ← "t"" "met> #"PGP

so once we have specified 6 and chosen the representations Rcg )
,
we will ]

have fully specified our quantum field theory of elementary particles .

Why unitary? We want a symmetry operation to preserve inner products . If a
state K> transforms as UK>, then for any operator Q

< ✗ 101 a> → <✗ tut outs>
.
For these to be the sure

,
in the

Heisenberg picture where states are Fixed and operators transform
,

we must have 0→ UtOU
. Taking 0=11 implies Utu = 11

.

We have a tread, discussed how 4K ) is a collection of quark- operates

labeled by ×? so this justifies the abstract transformation rule

4 → Utyu .

An equivalent way of realizing this symmetry is

to let y itself transform in a representation R .

☆ loophole : supersymmetry ! But this is the only one we know of
, and it doesn't

describe the standard model .



KIn this course (as opposed to QFT) we are more interested

in the symmetry transformations on fields
,

but these are

equivalent descriptions ( i. e. here is a well-defined prescription Fo- constructing UG))

Algorithm for constructing QFT of elementary particle interactions :

• Write down an actor SCY ] = {dFL[ e
, die , . . . ] which is

a scalar functional of the fields

- by construction, ensure S is i t under Poincaré and
any

other desired internal symmetries

• Find equations of motion by variational principle 85 = 0

- these equations will respect the sa-eies as 5

itself

• The quadratic piece
of £ describes free (non-interacting )

- -

fields
.
Fourier - transform these fields to find operators which

create free particles with definite momentum ten

- these plane - wine solutions will satisfy a dispersion relation
Knkn = Mr appropriate for relativistic particles

- the spin of the particle is determined by the Poincaré

classification , i. e- eigenvalue of Ñ( though we were not rigorous
about it, we were looking at unitary representations on

states ) : (this notation is standard )

spin
- 0 : (0,0 ) 41×1 → ∅(a- ' lx -a))

spin - ti. (1/0) audio- ( °, E) taw → LEY, In
"

k -al )

spin- i. (E. E) Ann → ÑµA ✓
In

- '

k -al)
these three are sufficient to describe all particles in fresh

• The Cu her pieces of L describe inks . If the

coefficients (" coupling constants") are small, can write down a

perturbative expansion => FeyYams


