Nonabelian gauge fields (very brief
$$
(y_i)
$$
)

Let's now try to promote the SUCV symmetry of I to a gauge symmetry We want the Lagrangian to be invariant under the local Symmetry $I \rightarrow e^{i\alpha^{a}(x)T^{a}}I$ where $T^{a} \equiv \frac{\sigma^{a}}{2}$ (a=1,2,3). Guess a covariant derivative. $\boxed{\mathcal{D}_{\mu}\Phi = \partial_{\mu}\Phi - igA_{\mu}^{\alpha}I^{\alpha}\Phi}$. This time, we now need three spin-I fields A_{n}^{a} , are for each τ . will postpace proof for later, but the correct transformation $rule5$ are $[JA_{\mu}=\frac{1}{g}\partial_{\mu}\alpha+i[\alpha,A_{\mu}]](mctdxcommutator)$ or in Components, $JA_n^a = \frac{1}{g}$) $x^a - E^{abc}x^bA_n^c$ (recall commutation
relations for Pauli matrices $[\sigma^a, \sigma^b] = \sum_{i} \epsilon^{abc} \sigma^c$) The corresponding non-abelian field strength la 2x2 matrix-valued borente terms) $S_{\mu\nu}$ = $(3_{\mu}Av - 3_{\nu}A_{\mu}) - igCA_{\mu}A_{\nu}] \leq \frac{extn}{d_{\alpha}te}$ because fauli matrices A clever way to arite this. On = du-igAn (abstract covariant derivative operator) $[0, 0, 0] = (0, -i9A)(0, -i9A) - (0, -i9A)(0, -i9A)$ $= \frac{1}{2} \int_{\gamma} \gamma^2 V - i g \partial_{\mu} A_{\nu} - i g A_{\mu} \partial_{\mu} - i g A_{\mu} \partial_{\nu} - g^2 A_{\mu} A_{\nu}$ -dydn + ig dv An + ig And + ig And n + g Av An $= -i g(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig[A_{\mu} A_{\nu}])$ $= -i g F_{\mu\nu}$ Con show $(\ast Hw)$ that $\delta F_{av} = C$ ix, F_{av} , so F_{av} itself is not pange invariant. However, δ $(F_{\mu\nu}\cdot F^{\mu\nu})= \delta F_{\mu\nu}\cdot F^{\mu\nu}F_{\mu\nu}\cdot \delta F^{\mu\nu} = [i\alpha, F_{\mu\nu}]F^{\mu\nu}F_{\mu\nu}C^{\dagger}\alpha, F^{\mu\nu}]$ $= i \propto F_{\mu\nu}F^{\mu\nu} - F_{\mu\nu}f^{(\alpha)}F^{\mu\nu} + F_{\mu\nu}f^{(\alpha)}F^{\mu\nu}$ matrix product $-F_{\lambda\nu}F^{\mu\nu}$ ia and Einstein Summation

One last field:
$$
Tr(ABC - 1) = Tr(BC - A)
$$
. *Trace is cyclically*, 10 invarient, so by taking the trace, and can cancel. $(X$ remaining -10 from 3 and 9 of -1 gives 10 .

\nUsing $z = \frac{1}{2} \int F(Ew)F^{av} = E_{av}F^{aux} + E_{av}F^{aux} = 0$ for all 10 and 10 .

\nThus, $2 - \frac{1}{4} \int (E_{av}F^{av} - E_{av}F^{aux} - E_{av}F^{aux} - 0)$ for all 10 and 10 .

\nThus, (a) by just like 3 copies of the Lagrangian for 10 (101) gives 4×4 .

\nBut should inside $E_{av}F^{av} = a \int f(e^{i\theta}) = \frac{1}{2}$.

\nThus, $F_{av}F^{av} = 0$ and $F_{av}F^{aux} = 0$.

\nBut $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nBut $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nThus, $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nThus, $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nThus, $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nThus, $F_{av}F^{aux} = 0$ and $F_{av}F^{aux} = 0$.

\nThus, $F_{av}F^{aux} = 0$ and <math display="inline</p>

- Spin-I L -

\n6.6 or Lorentz
$$
ap_1
$$
 we found in Week ap_1 with the unit 1 and 1 is 1 and 1 is 1 and 1 is 1 and 1 is 1 .\n

\n\n6.7 For which $(\frac{1}{2}, 0)$ and $(\frac{1}{2}, \frac{1}{2})$. Now will think the 1 is 1 .\n

\n\n7.1 $(\frac{1}{2}, 0) \therefore \overline{1} = \frac{1}{2}$ and $\overline{1} = \frac{1}{2} - \frac{1}{16}$ is 1 .\n

\n\n8.1 $(\frac{1}{2}, 0) \therefore \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = 0 \Rightarrow \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = \frac{1}{2}\overline{a}$.\n

\n\n7.1 $(\frac{1}{2}, 0) \therefore \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = 0 \Rightarrow \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = \frac{1}{2}\overline{a}$.\n

\n\n7.1 $(\frac{1}{2}, 0) \therefore \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = 0 \Rightarrow \overline{1} = \frac{1}{2}\overline{a}$, $\overline{1} = \frac{1}{2}\overline{a}$, $\overline{1$

How do we write down a Lorentz-invariat Lagrangian ? So far, no Lorentz indices are present to contract with e.g. In ψ .

Can try just multiplying spins, eq.
$$
\frac{1}{R} + \frac{1}{R}
$$
, but this is not
block invarial.

$$
\delta(\psi_{k}^{+}\psi_{k}) = \frac{1}{L}(i\theta_{j}+\beta_{j})\psi_{k}^{+}\sigma_{j}\psi_{k} + \frac{1}{L}\psi_{k}^{+}(i\theta_{j}+\beta_{j})\sigma_{j}\psi_{k}
$$

$$
= \beta_{j}\psi_{k}^{+}\sigma_{j}\psi_{k} \neq 0
$$

 $\sqrt{2}$

On the one has the point in which
\nSpinor is invariant:
\n
$$
\delta(\psi_{L}^{+}\psi_{R}) = \frac{1}{L}(\frac{1}{\theta_{j}}-\beta_{j})\psi_{L}^{+}\sigma_{j}\psi_{R} + \frac{1}{L}\psi_{L}^{+}(-i\theta_{j}+\beta_{j})\sigma_{j}\psi_{R}
$$
\n
$$
= 0
$$

This isn't Hemitian, so add its Hermitian conjugate to make the Lagrangian real, \angle) $m(\psi_L^+ \psi_R^+ \psi_L^+ \psi_L)$ et will see this is a mess fem for $Spin\frac{1}{2}$ Fields

Conclusion, without derivatives, only a product of 4, ad 4 is locate-invertal, But just this term alone gives equations or motion $\psi_{L} = \psi_{R} = 0$, which can't describe fields that actually do anything.

Consider
$$
\Psi_{k}^{\dagger} \sigma_{;} \psi_{k}
$$
.

\n
$$
\delta(\psi_{k}^{\dagger} \sigma_{j} \psi_{k}) = \frac{1}{L} (i\theta_{j}^{\dagger} \phi_{j}) \psi_{k}^{\dagger} \sigma_{j} \sigma_{j} \psi_{k}^{\dagger} + \frac{1}{L} (-i\theta_{j}^{\dagger} \phi_{j}) \psi_{k}^{\dagger} \sigma_{j} \sigma_{j}^{\dagger} \psi_{k}^{\dagger}
$$
\n
$$
= \frac{\beta_{j}}{L} \psi_{k}^{\dagger} \{\sigma_{j}^{\dagger} \sigma_{j}^{\dagger} \sigma_{j}^{\dagger} \psi_{k} - \frac{i\theta_{j}}{L} \psi_{k}^{\dagger} [\sigma_{j}^{\dagger} \sigma_{j}^{\dagger}] \psi_{k}^{\dagger}
$$
\n
$$
= 2\delta_{ij} = 2i\epsilon_{ijk} \sigma_{k}
$$

 $=$ β ; γ_{R}^* + ϵ isk θ ; γ_{R}^* σ_k ψ_R Let's define $\sigma^m = (1, \bar{\sigma})$. Claim: $\psi_k^+ \sigma^m \psi_k = (\psi_k^+ \psi_k, \psi_k^+ \sigma_i \psi_k)$ has precisely The Loretz transformation properties of a 4-vector Vm= (vo, v): $JV^o = \vec{\beta} \cdot \vec{V}$ $\delta \vec{v} = \vec{\beta} v^{\circ} + \vec{\epsilon} \times \vec{v}$ (you did this in Hu 1)

CAUTION: 5
$$
m
$$
 is m or n is m or n is m or n is m or n for n for

If
$$
\psi_0
$$
 and ψ_R have the same symmetries, for $m \neq 0$ if $\frac{14}{15}$
\nConvoliate to *l* and *l* from into a 4-component object
\n $\psi = \begin{pmatrix} \psi_0 \\ \psi_R \end{pmatrix}$, called a *l* and *gliver*. If we define
\n $\overline{\psi} = \psi^+ Y^0 = (\psi_0^+ - \psi_1^+)$ where $Y^0 = \begin{pmatrix} \frac{\partial w_0}{\partial x_1} & \frac{\partial w_1}{\partial x_2} \\ \frac{\partial w_0}{\partial x_2} & \frac{\partial w_1}{\partial x_1} \end{pmatrix}$
\nand $Y^0 = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \end{pmatrix}$. Recall from $H_{\overline{W}} \geq H_{\overline{W}}$
\nand $Y^0 = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \end{pmatrix}$. Recall from $H_{\overline{W}} \geq H_{\overline{W}}$ for the
\n*l* and $Y^0 = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \end{pmatrix}$. Recall from $H_{\overline{W}} \geq H_{\overline{W}}$ for the
\n*l* and $Y^0 = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \end{pmatrix}$.
\nLet $\overline{Q} = \frac{1}{2} [Y^* Y^*] = 3$, find $\overline{Q} = 1$ for $\overline{Q} = 1$

i.e. $\Upsilon^* \partial_{\lambda} \equiv \not \delta$
To obtain equation of motion for $\overline{\psi}_j$ integrate derivative term by parts:

i.e. $\gamma^* \partial_{\lambda} \equiv \mathcal{J}$

 $\sqrt{2}$ $\alpha = -i(\rho_{\alpha}\bar{\psi})\gamma^{\alpha} \psi - \alpha \bar{\psi} \psi$ $\frac{\partial F}{\partial \psi}$ = 0 = > -i $\theta_n \overline{\psi}$ or - n $\overline{\psi}$ = 0, or in a more convenient notation, $\overline{\psi}(-i\overleftrightarrow{D}-m)=O$ ($\overline{\hat{D}}$ is a reminder that derivative acts on the left, before Y^m)

Noether's Theorem

Extremely powerful tool in QFT: symmetries as conservation laws. An example: the statement of conservation of charge can be expressed in $E+M$ as $\frac{\partial \rho}{\partial t} = -\vec{V} \cdot \vec{J}$, or in relativistic notation, $\int_{a}^{b} \int_{a}^{b} = 0$ for the 4-current $\int_{a}^{b} = (\rho, \vec{J}).$ We agued that the gauge field coupling to 4 could describe electron-photon interactions, so we should be able to build a

Current operator out of $\overline{\psi}$ which is conserved when ψ Sutisfies its equation of motion. Looking at the Lagrangian, we find $2 = i \overline{\psi} \beta \psi - m \overline{\psi} \psi = i \overline{\psi} (\partial_{u} - ig \alpha A_{u}) \gamma^{\mu} \psi - m \overline{\psi} \psi$ $D - A_{n}(-g \alpha \bar{\psi} \gamma^{n} \psi)$

Check conservation: ∂_{μ} (-gQ $\overline{\psi}$ r +) = -gQ $\overline{\psi}(\overline{\mathcal{S}} + \overline{\mathcal{S}})\psi$ Recall Dirac equation were lexpanding out covariant derivative) $(i\not\!\! D - m)\nvdash = 0 \Rightarrow \not\!\! \partial \Psi = (ig \&\nvdash -i m)\psi$ $\overline{\psi}(-\widetilde{D}-m)=0\Rightarrow\overline{\psi}\bar{\mathbf{\Sigma}}=\overline{\psi}(-ig\& K+i m)$

=> 2π jⁿ = -gQ $\overline{\psi}$ (-ig & K +i/n +igQ/K -ip) $\psi = 0$ Note that It piece Lancels on its own, so ∂_{λ} j^{on}= 0 ever without A!