Noether's theorem guarantees ∂_{κ} in as a consequence of the $\sqrt{6}$ invariance of \perp under the internal symmetry $\psi \rightarrow e^{i\alpha x}\psi$ invariance of \perp under the internal symmetries
The theorem: λ invariant under a continue $\frac{x}{2}$ $\frac{9u}{2}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{3}{2}$ The internal symmetry $\psi = e^{\frac{i\pi}{4}}\psi$
ant under a continuous symmetry $\overline{J}\psi_i = \alpha \frac{\overline{J}\psi_i}{\overline{J}\alpha}$
= $\leq \frac{3\lambda}{\lambda} \frac{\overline{J}\psi_i}{\sqrt{\lambda}}$ conserved. ⁵⁴; conserved. $\overline{\bar{\sigma_{\alpha}}}$ (see Schwartz 3.3 For a post) ℓ ; can be any fields (scalar, fermily...), and \leq runs over all fields transformed by the symmetry. Example: $x = \overline{\psi}(i)x-m$) ψ invt. under $\psi \rightarrow e^{i\alpha x}\psi$, $\overline{\psi} = e^{-i\alpha x}\overline{\psi}$ $=$ $5\sqrt{4}$ = $\frac{1}{4}$ ka $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{4}}$ $\begin{array}{c} \n\hline\n\searrow a\n\end{array}$ $x = \frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial y}$
 $\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial x}$
 $\frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial y}$
 $\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial y}$ $i\overline{\Psi}\Upsilon^{n}(i\alpha f)+O\left(\measuredangle\right)$ doesn't have $\partial_{\alpha}\overline{\psi}$) $= -Q\overline{V}Y^{\prime\prime}Y$, same as we found before! (up to a factor of g, since without a gauge field there is no compling) jo as constructed from a usilhout a gauge field there is no commetery is called a Noether cur current. Lan play same game for a complex scalar field, will find for UCI) j^* = -i Q ($\not\!\!E^+\delta^{\alpha}\Phi$ - ($j^*\!\!\!E^+\rho\bar\Phi$) exactly as we saw previously. Non-abelian requires being ^a little more careful with indices, we'll do this later.

All our Lagrangians are also invariant under Poincaré, so: translation invariance \Leftrightarrow conservation of energy-momentum rotation invariance es conservation of angular momentum. In HW 3 you'll see how to interpret the Noether current For ^a gauge Field with ^a translation invariant action .

Standard Model E

The Standard Model
We have classified spin-
internal (gause) symmetry We have classified spin-O and spin-1 Fields by their Lorentz reps and internal (gausel symetres, trough which we introduced spinal fields. Here are the Fields which comprise the Standard Model! Chodel

Fied spin-D and spin-2 Fields by

c) symmetries, twargh which we

Fields which congrise the standar

spin-2
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $\begin{array}{|c|c|c|c|c|}\n\hline\n-\frac{1}{2} & -1 & \frac{1}{2} & \frac{2}{3} & -\frac{1}{2} \\
\hline\n\end{array}$ s pin- $\frac{1}{2}$ i \angle Spin-O $\frac{c_1\sqrt{2\pi}}{\sqrt{2\pi}\left(\frac{e^{2}e^{2}}{e^{2}e^{2}}\right)}=\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot\frac{e^{2}e^{2}}{e^{2}e^{2}}\cdot$ e Standard Model

I have classified spin-O and spin-2 fields by their bond

formal (gauge) symmetries, though which we introduce

one are the Fields which comprise the Standard Model
 $\frac{1}{\sqrt{100}}$
 $\frac{1}{\sqrt{100}}$
 $\frac{1$ r ^F gause | U(I) y - $\frac{(\frac{V_{L}}{e_{L}})}{\frac{1}{e_{L}}}$ - $\frac{e_{R}^{2}}{e_{L}^{2}}$ $\frac{G_{F}=(\frac{V_{L}}{d_{L}})}{\frac{1}{e_{L}^{2}}}$ - $\frac{1}{e_{L}^{2}}$ -(ds which comprise in standard river)
 $\frac{5 \rho i n-\frac{1}{2}}{2}$
 $\frac{\left(\frac{v_{\ell}^{f}}{e_{\ell}}\right) e_{R}^{f}}{\frac{1}{2} - 1} = \frac{1}{2} \frac{1}{2} - \frac{1}{3} \frac{1}{2}$ $Fildy \begin{cases} 3u(2) \end{cases}$ $\begin{array}{c} \text{gauge} \ \text{first} \ \text$ Model

Id spin-O and spin-2 Fields is

symmetrics, twangh which we

Spin-3

(ieds which comprise the Stand

Spin-3

(iet)

I Let are left/right-handed legton

Charges/representations

ent are left/right-handed legton

unt/ Charges/representations Terminology ! L, Charges/representations
ext are left/right-handed leptons
fut - chlistin del auto $Q_{F,\mu\nu}$ that are left/right-handed quarks $\frac{1}{e^{i\pi}}$ $f=1,2,3$ are generations ($f=1$ is electron, electron neutrino, up quart, down quark, left/right-harded leptons
cleft/right-harded quarks
generations (F=1 is electron, electron neutrino, up quark, a
or flavors f=2 is muan, muon neutrino, charm quark $\frac{e^{at}}{a}$ $f=2$ is muan, muon neutrino, chann qual, strace qual,
 $f=2$ is muan, muon neutrino, chann qual, strace qual, H is the Higgs Field H is the H 1995 fie
UCI), is hyperchape
UCII (sprektives SL SU(2) $(s_{\theta}+e^{k\pi\epsilon_{5}}s_{\theta(2)}),$ is the weak force, and only acts on left-handed Fermions (and the Higgs) 1 ert-hander Fermions (and the 11995)
SU(3) (sometimes SU(3)_c) is c<u>olor</u>, or the strong force Notation: Anything with a V under SUC2) is a 2-component vector of fields
Which transforms with $e^{i\alpha^2\tau^2}$, like $\overline{\Phi}$ we saw earlier (in fact, $\overline{\Phi}$ is H). which transforms with $e^{i\alpha t\pi}$, like Φ we saw earlier (in fact, Φ is μ). S imila^{rly} , he quakes are 3-corporat rectors transferring with 3x3 untory matrices f'' ad", "green", "blue"), so Q is actually a 3x2=6-component field

 $Q_f = \begin{pmatrix} \begin{pmatrix} u_f \\ u_f \end{pmatrix} & \begin{pmatrix} \partial f \\ \partial f \end{pmatrix} & \begin{pmatrix} \partial f \\ \partial f$

The Standard Model consists of (almost) all terms we can write down up to total dimension of which are invariant under Lorentz and local $\mathcal{SUC3}) \times \mathcal{SUC2}) \times (1/2)$ symetry.

Easy stuff first, sure), $C^21, -8$ sure), $a=1, -3$ \angle uci), $\Lambda_{\epsilon i}$ = $|0_{m}H|^{2} - \frac{1}{4} \zeta_{m}^{c} 6^{mC} - \frac{1}{4} W_{m}^{a} W^{m} - \frac{1}{4} B_{m} 6^{m}$ $+ \frac{3}{2} \left\{ i \downarrow \frac{1}{r} \bar{\sigma}^{\mu} D_{\mu} L_{f} + i \alpha_{f}^{+} \bar{\sigma}^{\mu} D_{\mu} \alpha_{f} + i \alpha_{g}^{f^{+}} \sigma^{\mu} D_{\mu} e_{g}^{f} + i \alpha_{g}^{f^{+}} \sigma^{\mu} D_{\mu} u_{g}^{f} + i \alpha_{g}^{f^{+}} \sigma^{\mu} D_{\mu} d_{g}^{f^{+}} \right\}$ $\begin{pmatrix} 1 & \mu_{14,15} & \mu_{15} & \mu_{16} & \mu_{17} & \mu_{18} & \mu_{19} & \mu_{11} & \mu_{10} & \mu_{11} & \mu_{10$ Since fermions have dimension 3, a femion-femion-scala term (known as a Yukaun term) has dirension 4. What such terms are allowed? $\mathcal{L}_{y_{ikawa}} \supset -y_{is}^{e}L_{i}^{+}H e_{k}^{s} -y_{is}^{*}\mathcal{Q}_{i}^{+}H d_{k}^{s} +h.c.$ Hermitian conjugates. There are $3x3$ motors $0 \neq$ numbers rechet for Lascangian to be real, but are often dropped for Consider $L^{+}He_{R}$ term forst: Convenience. $SU(3)$. L_i^+ $\neg L_i$, $H \neg H_i$, $e_k^3 \neg e_k^j$ (no trasformations, so trivially invertent) $SU(2)$. $L_i^+ - L_i^+ u^+$, $H \rightarrow U H, e_k^+ - e_k$ for some $U \in SU(2)$, so $L_i^+ H e_k^j = L_i^+ (y^T u) H e_k^j = L_i^+ H e_k^j$, invariant (os expected, inst like $\Phi^+ \Phi$) $U(1)_y$: this group is Alelian, so as a shortcut, can just count charges) $t^{\frac{1}{2}} + \frac{t^1}{2} - 1 = 0$
 $L^+ + He^j$ So ever troush L; and e_R transform differently, it compensates, making it invarient.

Very similar story for second term. Can check $54(3)$ and $54(2)$ yourselt, $-\frac{1}{6}$ + $\frac{1}{2}$ - $\frac{1}{3}$ = 0 $U(1)$ y $\frac{1}{2}$ Q^+ H d_R^3

 $\frac{1}{8}$

One final trick and were done! We can make an SUCD-invariant 19
\nfrom without taking Heritin congruates.
\nYou will show (a) How that
$$
E^{ab}Q_{a}H_{b}
$$
 (or $E^{ab}Q_{a}^{+}H_{b}^{+}$) is invariant and SUCD.
\nSo, defining $\tilde{H} = E^{ab}H_{b}^{+} = \begin{pmatrix} H_{b}^{b} \\ -H_{b}^{b} \end{pmatrix}$, which has $y = -\frac{1}{b}$, we can write
\n $\int_{y_{b}^{+}} y_{b}^{+} = \begin{pmatrix} 1 & b \\ -b & d \end{pmatrix}$, which has $y = -\frac{1}{b}$, we can write

 $[**l** + **l** + **l** + **l** + **l**$

$$
\begin{aligned}\n&\mathcal{L}_{5n} = \mathcal{L}_{t_{\text{incl}}} + \mathcal{L}_{x_{\text{incl}}} + \mathcal{L}_{\mu_{\text{in}}}} \\
&= |0_{n}H|^{2} - \frac{1}{4} \mathcal{G}_{\mu_{\nu}} \mathcal{G}^{\mu_{\nu}} - \frac{1}{4} W_{\mu_{\nu}} \mathcal{G}^{\mu_{\nu}} - \frac{1}{4} B_{\mu_{\nu}} \mathcal{G}^{\mu_{\nu}} \\
&\quad + \frac{2}{4} \left\{ i L_{F}^{\mu} \bar{\sigma}^{\mu} 0_{\mu} L_{F} - i R_{F}^{\mu} \bar{\sigma}^{\mu} 0_{\mu} R_{F} + i R_{F}^{\mu} \sigma^{\mu} 0_{\mu} R_{F}^{\mu} + i R_{F}^{\mu} \sigma^{\mu} 0_{\mu} W_{R}^{\mu} + i R_{F}^{\mu} \sigma^{\mu} 0_{\mu} d_{R}^{\nu}\right\} \\
&\quad - \mathcal{Y}_{15}^{\mu} L_{F}^{\mu} H e_{R}^{j} - \mathcal{Y}_{15}^{\mu} R_{F}^{\mu} H d_{R}^{j} - \mathcal{Y}_{15}^{\mu} R_{F}^{\mu} \tilde{H} u_{R}^{j} + h.c.\n\end{aligned}
$$

The remaining Il weeks of the course will be devoted to the physical Consequences of this Lagrangian.

For fun, a faste of the Higgs nechanism, note that this Lagrangian has no femion masses (it can't, since all the left- and right-handed fermions have different U(1) charges). But, if we set H= (0) with V a constant, Men $1 8 16$ $1/\ell + 1$

$$
y_{11}^T L_1^T H e_R^T \longrightarrow y_{11}^T (V_L^T e_L^T) \begin{pmatrix} 0 \\ v \end{pmatrix} e_R = V y_{11}^T e_L^T e_R
$$

More on Mis, and how electromagnetism energes from hypercharge, in the weeks to come.

The terms we didn't write down are of the form \Box θ F^{α} F^{α} , where $F = G, W, B$ and $\widetilde{F}^{\alpha\nu} = \epsilon^{\alpha\nu\rho\sigma} F_{\rho\sigma}$ Trese are called theta terms. They happen to be total derivatives. $\frac{1}{2}$

Mai acrivatives.
 $\partial_{n}K_{\lambda} = F_{\lambda\nu}^{\alpha}\hat{F}^{\lambda\nu\alpha}$, where $K_{\lambda} = \frac{1}{2}F^{\alpha\beta\alpha\alpha} - \frac{1}{2}F^{\alpha\beta\alpha}A^{\nu\alpha}A^{\alpha\beta}A^{\alpha\beta}$ Cactually doing the derivative is an index-filled mess, best done with algebra of differential forms).

This means they don't contribute to the (classical) equations of algebra of different
This means they
Motion. However,
Can be put in t the QCD treta term is physical because it Can be put in the Yukana matrix by performing a chiral
rotation $Q\rightarrow e^{i\alpha}Q$, wdepe^{ins}urde with $\alpha\neq\beta$. This is because this transformation is anomalous: it leaves the Lagrangian the same but changes the measure of the path integral. (More on this in RFT 2.) The theta term has non-perturbative observable effects, including inducing an electric dipole momet for the $v_{\text{rec}}(s)$ including inducing an electric dipole moment for the
Neutron. We haven't measured this, so can bound $\theta \leq 10^{-10}$. Lis transformation is anomalous
int changes the measure of
This in QFT 2.) The thet
effects, including inducing a
This is the strong-CP pobl
To wraf uf, let's practs problem: why is θ so small?

To wrap up, let's practice with Noether currents. The SUC3) gause symmetry has a global part given by $\alpha\hat{c}(x) = \alpha\hat{c}(x)$. ^a constant transformation parameter), so we can try to upply Noether's theorem. The quark fields transform as $(a_j \equiv a_j^r u_j^r d^r)$ $\frac{\partial Q_i}{\partial \alpha}$ = i $T^a Q_i$, but the gange fields also transform, $\frac{A_{\lambda}^{b}}{a^{a}} = -f^{bac}A_{\lambda}^{c}$ So the Nretre current is $J^{nm} = \left(\frac{2}{r} \frac{\partial L}{\partial Q_{n}Q_{i}}\right) \frac{\partial Q_{i}}{\partial R_{n}} + \frac{\partial L}{\partial Q_{n}A_{v}} \frac{\partial L}{\partial R_{n}}.$ Taking into account the nonlinear

Iters in
$$
F_{av}
$$
, we have $(\cot \pi y + 1 - \cot \pi y + 1)$

\n
$$
\frac{1}{2} \int \frac{1}{\sqrt{2}} \int (1 + \tan \pi y) \cdot (1 + \tan \pi y) \cdot (1 + \frac{1}{2} \int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \cdot \frac{1
$$

This is certainly conserved, 2, Jan = 0 , as guaranteed by Nether's theorem, but it's not particularly useful because it's not gauge invariant! Not only does it contain Fro, which is $t_{23} = -QY^T T^aG$
this is a matrix,
order matrix,
 $-\overline{Q}_mY^m(T^a)_{n,a}Q$
certainly conse
is theorem to
is theorem to
covariant, it is
not not covar! is not gauge measured, that only does it contain the unic
only Covariant, it contains A_{ν}^{b} by itself, which is neither invariant nor covariant. This means the Noether current corresponding to a now-Abelian gange symmetry is mly cover
avariant
correspond
unphysical
anthenoth $unphysical.$

On the other hard, The Noether currents corresponding to UCI) gauge symmetries are gauge-invariant and physical. As we will see next week, at low energies the left- and right-handed fermions Pair up into 4-component Dirac spinors in the $(\frac{1}{2},0)\oplus(0,\frac{1}{2})$ Lorentz representation such that the Noether current of UCI) $_{\varepsilon,m}$ is the electric current operator. There are also conserved charges corresponding to global symmetries of the SM Lagrangian, which you'll explore on the HW.