Quartum electrodynamics

SM Lagrangion From last time.

$$
\begin{split}\n\mathcal{L}_{5n} &= \mathcal{L}_{t_{initial}} + \mathcal{L}_{x_{param}} + \mathcal{L}_{Higgs} \\
&= |D_{m}H|^{2} - \frac{1}{4} G_{m}^{2} G_{m}^{2} - \frac{1}{4} W_{m}^{2} W_{m}^{2} - \frac{1}{4} B_{m} B^{2}V_{m} \\
&+ \frac{2}{7} \left\{ i \frac{1}{4} \overline{\sigma}^{2} D_{n} L_{F} + i \alpha_{F}^{2} \overline{\sigma}^{2} D_{n} \alpha_{F} + i \alpha_{K}^{2} \sigma^{2} D_{n} \alpha_{K}^{F} \right\} \\
&- \mathcal{V}_{13}^{e} L_{1}^{+} H e_{R}^{3} - \mathcal{V}_{13}^{*} \alpha_{K}^{+} H u_{R}^{3} - \mathcal{V}_{13}^{*} \alpha_{K}^{+} \widetilde{H} u_{R}^{3} + h.c. \\
&+ m^{2} H^{+} H - \lambda (H^{+} H)^{2} \\
\text{Fois on unbounded terms, today, After setting, } H = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ and diagramtizing} \\
\mathcal{V}_{13}^{e} & \text{between Computer of Fermion doublet} \\
\mathcal{V}_{23}^{e} &= \frac{1}{2} \overline{\sigma}^{2} D_{n} c_{L}^{F} + i c_{R}^{F} \sigma^{2} D_{n} c_{R}^{F} - \mathcal{V}_{K} V e_{L}^{H} e_{R}^{F} + h.c. \\
\mathcal{V}_{33}^{2} &= \frac{1}{2} \overline{\sigma}^{2} D_{n} c_{L}^{F} + i c_{R}^{F} \sigma^{2} D_{n} c_{R}^{F} - \mathcal{V}_{K} V e_{L}^{H} e_{R}^{F} + h.c. \\
\mathcal{V}_{13}^{3} &= \frac{1}{2} \overline{\sigma}^{2} D_{n} c_{L}^{F} + i c_{R}^{F} \sigma^{2} D_{n} c
$$

 \overline{z}

we want to: *Let*ify
$$
y_f v \equiv Mf
$$
, but for this to describe che-zed leptas
(electing means, $tan\left(\frac{1}{f} + \frac{1}{f} + \frac{1}{f$

In fact,
$$
Q = T_3 + Y
$$
, where T_3 is the 3rd power of such.
\n $T_3 = \frac{1}{2}\sigma_3 = \frac{1}{2} + (-\frac{1}{2})$, so e_L is an eigenvector of T_3 *weierence* $-\frac{1}{2}$.
\n $Q_L = -\frac{1}{2} + (-\frac{1}{2}) = -1$ { h_3 *work*!
\n $Q_R = 0 + -1 = -1$

Conclusion: electromagnetism is a linear combination of SUCU) and UCI), jauge bosons.

We will see later on that the remaining SU(2) gauge fields are
much heavier than
$$
m_{e}
$$
, m_{m} , so for the time being use on *if* was
Then.

 $\sqrt{a_{E0} = \left(\sum_{r=1}^{3} \overline{\psi}_{r}(i)_{n} - eA_{n}\right)Y^{m}\psi_{r} - m_{F}F\psi_{r}^{2} - \frac{1}{4}F_{nr}F^{nr}\right] - \frac{1}{4}F_{nr}F^{nr}$ of *W*³ and *B*
where $\psi = \begin{pmatrix} e_{L} \\ e_{R} \end{pmatrix}$, $\overline{\psi} = \begin{pmatrix} e_{L}^+ & e_{L}^+ \end{pmatrix} = \psi^+Y^{o}$

 $= - - - - - -$

Classical Spino solutions

Subhence in general *A* has in

Classical Spino-Solution
\n $(M\text{Answer}) \text{Dirac equation: } W^*D_{\mu}V - mV = 0$ \n $(w_{\mu}w_{\mu})\text{interlattice} + k_{\mu}w_{\mu}w_{\mu}$ \n $L\text{obk for Soluffon: } V = e^{-i\beta x} \left(\frac{x_L}{x_R}\right) \text{ when } x_L, x_R \text{ are constant 2-tang spinog}$ \n $= 7 Y^*P_{\mu} \left(\frac{x_L}{x_R}\right) = m \left(\frac{x_L}{x_R}\right)$ \n $\left(\begin{array}{cc} 0 & \beta' \sigma \\ \rho \cdot \overline{\sigma} & 0 \end{array}\right) \left(\begin{array}{c} x_L \\ x_R \end{array}\right) = m \left(\begin{array}{c} x_L \\ x_R \end{array}\right)$ \n <p>First look for solutions with $\overline{\rho} = 0$, can construct the solution for general $\overline{\rho}$ with a Lorentz boost. $\rho \cdot \sigma = \rho \cdot \overline{\sigma} = m\mu$, so</p> \n $\left(\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x_L \\ x_R \end{array}\right) = 0 \qquad = 7 X_L = X_{R_L, b_1} + \rho \text{for } X_{R_L, b_2}$ \n <p>Choose a basis: $X_L = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \text{ or } \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \text{ so } \left[\begin{array}{cc} 1 + \rho \cdot \text{for } X_{R_L, b_1} + \rho \text{for } X_{R_L, b_2} \end{array}\right]$</p> \n <p>Thus, $\rho = 0$ for all $\rho = 0$, $\rho = 0$, $\rho = 0$, and $\rho = 0$.</p>

First look for solutions with $\widehat{\rho}$ = $\hat{\rho}$ = 0, conconstruct the solution for general $\vec{\rho}$ with
 $\bar{\sigma}$ = m1, so a Lorentz boost. p o = p o = m1, so

$$
\left(\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right)\left(\begin{array}{c} x_{\nu} \\ x_{\ell} \end{array}\right) = 0 \qquad z \supset x_{\nu} = x_{\alpha}, \text{ but otherwise measured}
$$

Choose a basis: χ_{ν} = $\binom{1}{0}$ or $\binom{0}{1}$, so $\lfloor k+1\rfloor$ 4-component solutions be Choose a basis: $X_{L}=(\begin{pmatrix} 1\\ 0 \end{pmatrix})$ or $(\begin{pmatrix} 0\\ 1 \end{pmatrix})$ so let 4-component solutions be
 $M_{p}=\sqrt{m} \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$ and $u_{q}=\sqrt{m} \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$. These represent spin-up and spin-boun electory for muons or tans (full justification and normalization come from GFT
Just like with complex scalar Fields, there are also negative-fre solutions $e^{i(\rho x)}(x)$ that represent antiparticles: positions. Changing sign Just like with complex scalar Fields, there are also regative-Frequency of ρ^o means $\chi_{\rho} = -\chi_{\rho}$ Note : different labeling convention from Schwartz . V_{\uparrow} = $\sqrt{n} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$, V_{\downarrow} = $\begin{pmatrix} 1 \ 0 \ -1 \ 0 \end{pmatrix}$ Physical spin-up positions have $X_{\mu} = \begin{pmatrix} 0 \ 1 \end{pmatrix}$;
this comes from $\& \vdash \Gamma$.

On consider solutions for general
$$
p
$$
 with *length* transformation.

\nFor any null just write down the solution and check that if every null just write down the solution.

\n
$$
u(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_1 \\ \sqrt{p \cdot \sigma} & f_2 \end{pmatrix}, \quad v'(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_2 \\ -\sqrt{p \cdot \sigma} & f_3 \end{pmatrix}, \quad v'(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ -\sqrt{p \cdot \sigma} & f_3 \end{pmatrix}, \quad v'(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ -\sqrt{p \cdot \sigma} & f_3 \end{pmatrix}, \quad v'(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ -\sqrt{p \cdot \sigma} & f_3 \end{pmatrix}, \quad v'(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ f_3 = 1, 2 \end{pmatrix}
$$
\nCheck D in a $\sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & p \cdot \sigma \\ p \cdot \sigma} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ f_3 = 1, 2 \end{pmatrix} = \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ f_3 = 1, 2 \end{pmatrix}$, and $\sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & p \cdot \sigma \\ p \cdot \sigma} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{p \cdot \sigma} & f_3 \\ f_3 = 1, 2 \end{pmatrix} = \begin{pmatrix} 0 & f_3 \\ f_3 = 0, 1 \end{pmatrix} = m \sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & f_3 \\ f_3 = 0, 1 \end{pmatrix} = m \sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & f_3 \\ f_3 = 1, 2 \end{pmatrix} = m \sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & f_3 \\ f_3 = 1, 2 \end{pmatrix} = m \sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & f_3 \\ f_3 = 1, 2 \end{pmatrix} = m \sqrt{p \cdot \sigma} = \begin{pmatrix} 0 & f_3 \\ f_3 = 1, 2 \end{pmatrix$

↳

What about antpatically? A positron moving in De +z directton
\nwith spin-up along z-axis is still a right-handed antipatile, but it points
\n
$$
V_1(\rho) = \begin{pmatrix} 0 \\ \frac{\rho}{16+\rho^2} \end{pmatrix} \approx \text{JLE} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$
, which is pure X_L. HeList₂ and chirality
\nare opposite for anfipartices.
\n $16\pi k$ of \vec{w} and \vec{v} is as column vectors and $\vec{u} \equiv u^+V^0$, $\vec{v} \equiv v^+V^0$ as our roots.
\n $16\pi k$ of \vec{w} and \vec{v} is as column vectors and $\vec{u} \equiv u^+V^0$, $\vec{v} \equiv v^+V^0$ as row vectors.
\n $u_5(\rho) u_5(\rho) = u_5'(\rho) Y^0 u_5(\rho) = (\frac{1}{2}, \frac{1}{2}\rho^2 - \frac{1}{2}, \frac{1}{2}\rho^2) \begin{pmatrix} \frac{1}{2}\rho^2\vec{v} & \frac{1}{2} \\ \frac{1}{2}\rho^2\vec{v} & \frac{1}{2} \end{pmatrix}$
\n $= (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}) \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \pi \vec{J}_{5}$
\nSimilarly, $u_5'(\rho) u_5'(\rho) = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}) \begin{pmatrix} \rho \cdot \vec{v} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \vec{J}_{5}$, $(\pi k) \approx \frac{1}{2} \pi \vec{J}_{5}$

Andagous for v (check gowse(f))

\n
$$
V_5(\rho) V_5'(\rho) = -2mS_{55}
$$
, $V_5'(\rho) V_5'(\rho) = 2E\delta_{55}$

\nWe've been a 61⁺ fast and lower with matrix notation. The answer were
\n $V_5'(\rho) V_5'(\rho) = -2mS_{55}$,
\n $V_5'(\rho) V_5'(\rho) = 2mS_{55}$,
\n $V_5'(\rho) V$

Classical vector solutions

Gauge-Fixed Maxwell equetient. $DA_m = D$, $\delta^A A_n = O$ Again, look for solutions $A_{n} = E_{n}(\rho) e^{-i \rho x}$. We did this in week 4. in a frame what ρ^m = (E, O, O, E), we have $\mathcal{E}_{\mu}^{(1)}(\rho) = {(\rho_1|_{\rho}\rho_{\rho})}_{\rho}, \ \mathcal{E}_{\mu}^{(2)}(\rho) = (\rho_1 \rho_{\rho}|_{\rho}\rho)_{\rho}, \ \mathcal{E}_{\mu}^{+}(\rho) = (1, 0, 0, 1)$ Recall ϵ^{+} is imphysical because it has zero norm. However, we need to include it because $\epsilon_n^{c_{n+1}}$ mix with it where a foreste transformation. $Explicit, let \n\begin{pmatrix}\n\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
\frac{1}{2} & \frac{3}{2} & \frac{3}{2} \\
\frac{1}{2} & \frac{3}{2} & \frac{3}{2}\n\end{pmatrix}$. Conclock $\bigwedge^{T}\eta \bigwedge = \eta$, also $\bigwedge^{T}\eta \bigwedge^{2}\eta \bigwedge^{2}$ So A preserve, pm. However, A'' ϵ^{n} ϵ^{n} $\epsilon^{(1,1,0,1)}$ = ϵ^{n} + ϵ^{+} , so Lorentz transformations can generate the imphysical polarization. But it twns out that in $\&E\ell$, all amplitudes $M^{\prime\prime}(\rho)$ involving an external photon with momentum ρ^M satisfy $\rho_m M^M = O$. This is the Word ilatily, and because $\epsilon_n^2 \propto \rho^m$, this unphysical polarization doesn't contribute to any observable quantity. (More on Oris later!) Analogous to spinors, we can campute inner and outer products. $\epsilon_n^{(i)\phi}(\rho)$ $\epsilon^{(n\phi)}(\rho) = -\delta^{(i)}$, $i = 1,2$ (true for any ρ , not just $(\epsilon_{0,0,5})$) $\sum_{i=1}^{2} e^{i\pi(i)\phi}(\rho) e^{V(i)}(\rho) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = -\eta^{inv} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ -1 & 0 \end{pmatrix}$ $= -\eta^{av} + \frac{\rho^{a}\bar{\rho}^{v}+\rho^{v}\bar{\rho}^{a}}{\rho^{a}\bar{\rho}}$ where $\overline{\rho}$ = (E, o, o, -E). But by the againsts above, the provill alaays contract to 200, so we can say $\sum_{i=1}^{n} e^{ \Delta C_i^T \cdot \hat{B}} (\rho) e^{\nu C_i^T} (\rho) \longrightarrow - \eta^{\text{av}}$ (again, sur over spins gives a matrix) $(a|s_0$ true for any $\rho)$

 \int ℓ