structure functions show explicit Q^2 dependence (see Section 3.6) or some finite R value exists to change the y dependence (see Section 3.2).

There is not, however, universal quantitative agreement on the magnitudes of the cross sections, and, therefore, on the net fraction of momentum carried by interacting constituents. The CFRR data of Figure 18 imply that the quarks carry 47% of the nucleon momentum, but older data imply less than 40% for this fraction. Table 5 shows a comparison of total cross sections obtained from several measurements. Here we see the discrepancy between the recent measurements of the CFRR group (Lee 1980, Blair 1982, Rapidis et al 1981, Shaevitz et al 1981) and older measurements (Barish et al 1977, Bosetti et al 1977, de Groot et al 1979), which average about 15% in the overall normalization and therefore in the fractional momentum as well. The last entry is a recent reanalysis of the BEBC data, incorporating a new flux calibration that employed muon detectors in the shield. One of these detectors was calibrated using emulsions to separate the muons of in-flight pion decay from extraneous background Section 2.2.3). This neutrino cross section lies between the others. There is agreement with the CFRR (Rapidis et al 1981) value of the integrated xF_3 value, but rather poor agreement on the sea contribution.

The discrepancy in normalizations is of some importance for the reasons discussed above, but also because it is directly related to tests of the mean-square charge of the interacting constituents (see Section 3.3). Since the experiments use different techniques for absolute ν flux normalization, efforts are under way to more precisely monitor flux and to incorporate aspects of the two techniques in all experiments (Rapidis et al 1981).