
PHYS 575, HW #2

Due: 2/5/20

1. Poincaré derivations (25 points).

(a) Define Λ̃µ
ν ≡ ηναη

µβΛα
β . Show that Λ̃µ

ν is in fact the inverse of Λ by computing

Λ̃µ
νΛρ

µ and using the definition of the Lorentz group. On the other hand, by the
rules of index contraction, ηναη

µβΛα
β = Λµ

ν , so as long as we always raise and lower
indices using η and contract indices appropriately for transposes, we don’t need
to distinguish between Λ, its transpose, or its inverse.

(b) Using the 5×5 matrix representation of the Poincaré generators, show by explicit
computation that [P µ, P ν ] = 0.

(c) Using the Poincaré algebra derived in class, show that
[Wµ,M

ρσ] = −i(δσµW ρ − δρµW
σ), and furthermore that [W 2,Mρσ] = 0. (Note

that’s W -squared, not the second component.) Hint: for [Wµ,M
ρσ], consider

[WµP
µ,Mρσ].

2. Infinite-dimensional representations (25 points). We derived the commutation
relations for the Poincaré group from the defining representation by matrix multiplica-
tion, but these abstract commutation relations hold for any representation of the group.
In particular, they hold for infinite-dimensional representations, where the generators
act on functions f(xµ) rather than vectors.

(a) Consider the representation Pµ = i∂µ for the Poincaré generator. Compute eia
µPµ

as a formal power series and prove that eia
µPµf(xµ) = f(xµ− aµ). For this reason

we say that Pµ is the generator of translations. (You may remember this from
your quantum mechanics class.)

(b) The infinite-dimensional representation of the Lorentz generators is
Mµν = i(xµ∂ν − xν∂µ). By acting on a test function, prove that these genera-
tors and the Pµ defined in part (a) satisfy the full set of commutation relations
for the Poincaré group derived in class.
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3. A 4-dimensional reducible representation (25 points).

(a) Construct the explicit (1/2, 0) representation of the Lorentz group, i.e. the one

with ~B = 1
2
~σ and ~A = 0, corresponding to a boost by ~β and a rotation vector ~θ,

by exponentiating the Lie algebra ~J and ~K. (This is the same thing you did in
problem 4 of HW 1, but this time for the 2-dimensional representation instead of
the 4-dimensional defining representation.) For β = 0 and ~θ = θẑ, what is the
smallest nonzero value of θ which gives the identity element?

(b) Repeat part (a) for the (0, 1/2) representation.

(c) Write down the generators ~J and ~K for the reducible representation
(1/2, 0)⊕ (0, 1/2) as 4× 4 matrices. The symbol “⊕” means “direct sum,” which
for our purposes means that the generators can take a block-diagonal form.

(d) Define σµ ≡ (1, ~σ) and σ̄µ ≡ (1,−~σ). Define the four 4 × 4 matrices

γµ ≡
(

0 σµ

σ̄µ 0

)
.

Show that the Lorentz generators Mµν for the (1/2, 0) ⊕ (0, 1/2) representation
can be written as Mµν = i

4
[γµ, γν ]. You will see these γ matrices many more

times over the next several weeks!

4. No finite-dimensional unitary representations (25 points).

(a) Show that a Lie algebra X whose generators are Hermitian, X† = X, generates
a group representation U = exp(iαX) whose matrices satisfy U †U = 1. Matrices
with this property are called unitary.

(b) For the (1/2, 0) representation of the Lorentz group you found in problem 3, show

that ei
~θ· ~J is unitary but ei

~β· ~K is not. Therefore, the (1/2, 0) representation is not
unitary.

(c) In fact, there are no finite-dimensional unitary representations. Prove that in any

representation, if ~J is Hermitian, then ~K is not Hermitian, using the fact that ~A
and ~B are Hermitian (which follows from the mathematics of the representation
theory of su(2)). To get unitary representations, we have to involve the infinite-
dimensional representations you found in problem 2, which motivates the use of
fields which are functions of spacetime.
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