PHYS 575, HW \#2

Due: $2 / 5 / 20$

1. Poincaré derivations (25 points).

(a) Define $\widetilde{\Lambda}_{\nu}^{\mu} \equiv \eta_{\nu \alpha} \eta^{\mu \beta} \Lambda_{\beta}^{\alpha}$. Show that $\widetilde{\Lambda}_{\nu}^{\mu}$ is in fact the inverse of Λ by computing $\widetilde{\Lambda}_{\nu}^{\mu} \Lambda_{\mu}^{\rho}$ and using the definition of the Lorentz group. On the other hand, by the rules of index contraction, $\eta_{\nu \alpha} \eta^{\mu \beta} \Lambda_{\beta}^{\alpha}=\Lambda_{\nu}^{\mu}$, so as long as we always raise and lower indices using η and contract indices appropriately for transposes, we don't need to distinguish between Λ, its transpose, or its inverse.
(b) Using the 5×5 matrix representation of the Poincaré generators, show by explicit computation that $\left[P^{\mu}, P^{\nu}\right]=0$.
(c) Using the Poincaré algebra derived in class, show that $\left[W_{\mu}, M^{\rho \sigma}\right]=-i\left(\delta_{\mu}^{\sigma} W^{\rho}-\delta_{\mu}^{\rho} W^{\sigma}\right)$, and furthermore that $\left[W^{2}, M^{\rho \sigma}\right]=0$. (Note that's W-squared, not the second component.) Hint: for $\left[W_{\mu}, M^{\rho \sigma}\right]$, consider $\left[W_{\mu} P^{\mu}, M^{\rho \sigma}\right]$.
2. Infinite-dimensional representations (25 points). We derived the commutation relations for the Poincaré group from the defining representation by matrix multiplication, but these abstract commutation relations hold for any representation of the group. In particular, they hold for infinite-dimensional representations, where the generators act on functions $f\left(x^{\mu}\right)$ rather than vectors.
(a) Consider the representation $P_{\mu}=i \partial_{\mu}$ for the Poincaré generator. Compute $e^{i a^{\mu} P_{\mu}}$ as a formal power series and prove that $e^{i a^{\mu} P_{\mu}} f\left(x^{\mu}\right)=f\left(x^{\mu}-a^{\mu}\right)$. For this reason we say that P_{μ} is the generator of translations. (You may remember this from your quantum mechanics class.)
(b) The infinite-dimensional representation of the Lorentz generators is $M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)$. By acting on a test function, prove that these generators and the P_{μ} defined in part (a) satisfy the full set of commutation relations for the Poincaré group derived in class.

3. A 4-dimensional reducible representation (25 points).

(a) Construct the explicit $(1 / 2,0)$ representation of the Lorentz group, i.e. the one with $\vec{B}=\frac{1}{2} \vec{\sigma}$ and $\vec{A}=0$, corresponding to a boost by $\vec{\beta}$ and a rotation vector $\vec{\theta}$, by exponentiating the Lie algebra \vec{J} and \vec{K}. (This is the same thing you did in problem 4 of HW 1, but this time for the 2-dimensional representation instead of the 4 -dimensional defining representation.) For $\beta=0$ and $\vec{\theta}=\theta \hat{\mathbf{z}}$, what is the smallest nonzero value of θ which gives the identity element?
(b) Repeat part (a) for the $(0,1 / 2)$ representation.
(c) Write down the generators \vec{J} and \vec{K} for the reducible representation $(1 / 2,0) \oplus(0,1 / 2)$ as 4×4 matrices. The symbol " \oplus " means "direct sum," which for our purposes means that the generators can take a block-diagonal form.
(d) Define $\sigma^{\mu} \equiv(\mathbf{1}, \vec{\sigma})$ and $\bar{\sigma}^{\mu} \equiv(\mathbf{1},-\vec{\sigma})$. Define the four 4×4 matrices

$$
\gamma^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

Show that the Lorentz generators $M^{\mu \nu}$ for the $(1 / 2,0) \oplus(0,1 / 2)$ representation can be written as $M^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$. You will see these γ matrices many more times over the next several weeks!

4. No finite-dimensional unitary representations (25 points).

(a) Show that a Lie algebra X whose generators are Hermitian, $X^{\dagger}=X$, generates a group representation $U=\exp (i \alpha X)$ whose matrices satisfy $U^{\dagger} U=1$. Matrices with this property are called unitary.
(b) For the $(1 / 2,0)$ representation of the Lorentz group you found in problem 3, show that $e^{i \vec{\theta} \cdot \vec{J}}$ is unitary but $e^{i \vec{\beta} \cdot \vec{K}}$ is not. Therefore, the $(1 / 2,0)$ representation is not unitary.
(c) In fact, there are no finite-dimensional unitary representations. Prove that in any representation, if \vec{J} is Hermitian, then \vec{K} is not Hermitian, using the fact that \vec{A} and \vec{B} are Hermitian (which follows from the mathematics of the representation theory of $\mathfrak{s u}(2))$. To get unitary representations, we have to involve the infinitedimensional representations you found in problem 2, which motivates the use of fields which are functions of spacetime.

