
PHYS 575, HW #3

Due: 2/24/20 (this is a long one, start early!)

1. Noether’s Theorem (50 points). One of the most powerful results in quantum field
theory is Noether’s Theorem, which states that for every continuous global symmetry
of a Lagrangian, under which the n fields φi transform as φi → φi + δφi, there is a
conserved current:

jµ =
n∑
i=1

∂L
∂(∂µφi)

δφi

satisfying ∂µj
µ = 0 whenever the φi satisfies their equations of motion derived from

the Lagrangian. You can read about the proof in Schwartz Sec. 3.3.

(a) For the scalar Lagrangian considered in class,

L = (∂µΦ)†(∂µΦ)−m2Φ†Φ− λ(Φ†Φ)2,

construct the Noether currents corresponding to the U(1) and SU(2) symmetries.
Show that they satisfy ∂µj

µ = 0. Remember that there are two independent fields
Φ and Φ†, so the Noether current is a sum of the currents derived from considering
the variation of Φ and Φ† individually.

(b) For the first-generation lepton Lagrangian with L =
(
νe
eL

)
and eR,

L = iL†σ̄µ∂µL+ ie†Rσ
µ∂µeR,

construct the Noether currents corresponding to U(1)Y and SU(2)L, and show
that they are conserved. (Since the Noether current only depends on the part of
the Lagrangian containing derivatives of the field, we don’t have to worry about
the Yukawa terms in the Lagrangian.)

(c) Consider the Noether current associated with spacetime translations. The sym-
metry parameter is a 4-vector aµ, so the current takes the form jµ = T µν a

ν , and
the two-index tensor T is called the stress-energy tensor. For a massless spin-1
U(1) gauge field,

L = −1

4
FµνF

µν ,

construct the stress-energy tensor from the Noether current. Proceed as follows:
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i. Show that the effect of a spacetime translation by constant aµ is δAµ =
−aν∂νAµ.

ii. Combine this shift with a suitable gauge transformation (which is allowed
since the Lagrangian is gauge invariant) to define an “improved” transforma-
tion δAµ = Fµαa

α.

iii. Show that the variation of the Lagrangian under this transformation is a total
spacetime derivative. Explain why this transformation is still a symmetry
of the equations of motion even though the variation of the Lagrangian is
nonzero.

iv. The generalized version of Noether’s theorem is

jµ =

(∑
n

∂L
∂(∂µφn)

δφn

)
−Kµ

when the Lagrangian shifts by a total derivative ∂µK
µ. Use this to construct

the Noether current and identify the stress-energy tensor. Show that it is
conserved, ∂µT

µν = 0, and gauge-invariant. To show conservation, you will
want to use the equations of motion to simplify the result as much as possible
before writing F in terms of A. Write out the components of T µν in terms of
E and B and compare to the familiar result from electromagnetism:

T 00 =
1

2

(
E2 + B2

)
, T i0 = (E×B)i, T ij = EiEj +BiBj − 1

2
δij
(
E2 + B2

)
(see for example Jackson Sec. 6.7; T 00 is the energy density in E+M fields,
T i0 is the Poynting vector, and T ij is the Maxwell stress tensor). Refer to
Schwartz eq. (2.61) for the definition of Fµν in terms of E and B.

2. Dirac and Klein-Gordon (25 points).

(a) Show that the right- and left-handed Dirac equations with m = 0, iσµ∂µΨR = 0
and iσ̄µ∂µΨL = 0, both imply the massless Klein-Gordon equation ∂2ΨR,L = 0.

(b) Show that the massive Dirac equations derived in class imply the massive Klein-
Gordon equation, (∂2 +m2)ΨR,L = 0.

(c) Use the γµ matrices from HW #2 to write the massive Dirac equation in a con-
venient way as a single equation for the 4-component field Ψ =

(
ΨL

ΨR

)
:

iγµ∂µΨ−mΨ = 0

where m ≡ m14×4. Using the algebra of the gamma matrices, {γµ, γν} = 2ηµν

where {A,B} ≡ AB + BA is the anticommutator, show that the 4-component
Dirac equation also implies the massive Klein-Gordon equation.
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3. Accidental symmetries (25 points). The Standard Model Lagrangian we wrote
down in class has global symmetries in addition to the three gauge symmetries. These
are called “accidental symmetries” because we did not impose them on the Lagrangian,
they just happen to be there.

(a) Show that the full Standard Model Lagrangian is invariant under both U(1)Li
(i =

1, 2, 3), under which Li → eiαLi and eR → eiαeR,i with all other fields invariant,
and construct the associated Noether current: this represents conservation of
lepton number and there is a different symmetry for each generation i. Do the
same as part (a) for U(1)B, under which all the quark fields transform with eiα/3.
This symmetry is baryon number, and the 1/3 is there because there are three
quarks in a baryon.1

(b) If we set all the Yukawa couplings to zero, what are the additional global symme-
tries of the Standard Model Lagrangian?

4. Gauge field odds and ends (15 points).

(a) For a U(1) gauge field with Lagrangian −1
4
FµνF

µν , show that the equations of
motion are ∂2Aµ − ∂µ(∂νAν) = 0.

(b) For an SU(2) or SU(3) gauge field, show that the field strength transforms under
a gauge transformation as δFµν = [iα, Fµν ] (remember that α is an element of the
Lie algebra of the gauge group).

5. Theta terms (15 points). Show that a term in the Lagrangian θεµνρσGa
µνG

a
ρσ, where

θ is a constant, Gµν is the SU(3) field strength, and εµνρσ is the totally antisymmetric
tensor, is gauge-invariant and a total spacetime derivative.2

6. SU(2) invariants (10 points). Let V and W be 2-component vectors and εαβ be
the 2-component antisymmetric symbol. Prove that εαβVαWβ is invariant under the
transformation V → GV and W → GW , where G is a 2× 2 matrix with determinant
1. Hint: You can do this by brute force, or by thinking about determinants.

1It turns out that, while the Noether currents for these symmetries are conserved classically, in the
quantum field theory they are not conserved. These kinds of symmetries are known as anomalous symmetries,
which are symmetries of the classical Lagrangian which do not survive the quantization process.

2This latter fact means that it doesn’t contribute to the classical equations of motion, but in fact it does
have effects in quantum field theory: in particular, it would give rise to a neutron electric dipole moment.
The puzzle that current experiments bound |θ| < 10−10 despite the fact that this term is allowed for order-1
values of θ is known as the strong-CP problem.
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7. Neutrino masses (40 points). Neutrino oscillation experiments have unambiguously
established that neutrinos have mass, but the Standard Model as we have defined it
doesn’t include neutrino masses. In this problem we’ll see a couple ways to incorporate
them.

(a) Explain why the field content of the Standard Model as we defined it in class
cannot accommodate a neutrino mass term.

(b) Consider adding three right-handed neutrino fields νR,i. Setting H =
(

0
v

)
in the

Lagrangian, find a term with mass dimension 4 involving these new fields which
would give rise to neutrino masses. What are the gauge transformation properties
of νR,i (i.e. its representation under SU(3)C , SU(2)L, and U(1)Y )? What are the
masses in terms of v and the coefficient of this term? This mass term is known
as a Dirac mass.

(c) Alternatively, there is another kind of mass term for fermions that looks like
mεαβψαψβ + h.c., where ψ is a left-handed spinor.3 Using the results of prob-
lem 6, show that this mass term, called a Majorana mass, is Lorentz invariant.
Write down the equation of motion for ψ from the Lagrangian L = iψ†σ̄µ∂µψ −
mεαβψαψβ + h.c.; this is known as the Majorana equation.

(d) There is precisely one gauge- and Lorentz-invariant Lagrangian term with mass
dimension 5 which can be built out of Standard Model fields. Find it, and show
that with H =

(
0
v

)
, it results in a mass term of the kind discussed in part (c). The

coefficient of this operator must be cij/Λ, where cij is dimensionless and carries
generation indices, and Λ has dimensions of mass, in order for the Lagrangian to
have the correct dimension. What is the scale of neutrino masses in terms of c, v,
and Λ? (The actual masses come from diagonalizing the matrix cij, but for the
purposes of this estimate you can treat it as just a single number c.)

8. Relativistic kinematics at colliders (20 points). Larkoski problem 5.8.

3This may look weird; if ψ were an ordinary 2-component vector, this mass term would vanish! However,
in QFT you will learn (or have learned) that spinors are represented by anticommuting fields, so this term
does make sense. See Schwartz Sec. 10.6 for another perspective.
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