
PHYS 575, HW #6

Due: 4/1/20

1. Mott scattering (25 points).

(a) Derive the analogue of Schwartz eq. (13.103) for unpolarized scattering of a high-
energy electron off a quark, e−qi → e−qi, where the quark has charge Qie and
mass mqi . When you compute the spin sums, neglect the electron mass but do not
neglect the quark mass. Hint: You can check your answer for the matrix element
by using the crossing symmetry trick in Schwartz eq. (13.91).

(b) Integrate over E ′ in Schwartz eq. (32.20) to show that you can recover your
answer for part (a). (Recall that the two independent scattering variables are E ′

and θ, so you have to write Q2 in terms of E ′ and θ in the delta function, then
massage things to recover the factor of E ′/E.)

2. Photon splitting functions (50 points). Schwartz problem 20.6. Note: this result
will form the basis for much of what we will discuss in weeks 8 and 9, so please start
early and study it carefully. Despite the simplicity of the final answer, this is a long
calculation. Peskin section 10.2 gives an intuitive explanation using explicit spinors,
but here we will show that you can get the same answer using Dirac trace techniques.
Proceed as follows:

(a) Write down the two Feynman diagrams and the total matrix element for
e−(p1)e

+(p2)→ µ−(p3)µ
+(p4)γ(k) with a photon radiated from one of the initial -

state particles; these are analogous to Schwartz (20.25)-(20.27). Take care with
the signs and the order of the gamma matrices.

(b) Remembering that i
/p−m is just shorthand for

i(/p+m)

p2−m2 , use the Dirac equation to

simplify the numerator of the fermion propagator (you will be glad you did this
later in the calculation). You want to anticommute a gamma matrix through so
that you can use (/p−m)u(p) = 0 and v(p)(/p+m) = 0.

(c) Compute the spin sums in the squared matrix element, neglecting the electron
mass everywhere. All the action is in the left half of the diagram, so you can
ignore for now the piece involving the muon momenta, since this will just be the
same as e+e− → µ+µ− without a photon. Use Schwartz (13.112) to compute the
sum over photon polarizations. Organize the result into three pieces: a term with
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a squared electron propagator T1, a term with a squared positron propagator T2,
and a cross-term T3.

(d) Your result from (c) should have traces of four, six, and eight gamma matrices.
In T3, first show that the four-gamma trace is proportional to the result for 2→ 2
scattering which we derived in class for e+e− → µ+µ−. (Once we know this, we
don’t need to evaluate the trace, since it will become part of the 2 → 2 matrix
element.) Next, using the gamma matrix identity in Schwartz (A.38), show that
the eight-gamma trace vanishes because the photon is massless. Finally, show
that the four- and six-gamma traces in T1 and T2 vanish in the limit of massless
electrons.

(e) There are now two nontrivial traces left to compute. Specialize to the case where
a photon is emitted nearly collinear to the electron, k = zp1. Making this substi-
tution in T3, and using

Tr(γκγλγµγνγργσ) = ηκλTr(γµγνγργσ)− ηκµTr(γλγνγργσ) + ηκνTr(γλγµγργσ)

− ηκρTr(γλγµγνγσ) + ηκσTr(γλγµγνγρ),

show that the 6-gamma trace is also proportional to the un-evaluated 4-gamma
trace from part (d).

(f) For the 8-gamma traces in T1 and T2, show that for our choice of photon mo-
mentum, only T1 is singular. Using the identity Schwartz (A.36), reduce T1 to a
6-gamma trace and evaluate as above, giving a piece proportional to z times the
4-gamma trace from (d). Note that you cannot set k = zp1 inside the trace until
after reducing it to a 4-gamma, because a singularity cancels between numerator
and denominator.

(g) Combine all the singular pieces and use p2 · k = p2 · (zp1) = zp1 · p2 to find

〈|M|2〉e+e−→µ+µ−γ =
e2

p1 · k
1 + (1− z)2

z
× 〈|M|2〉e+e−→µ+µ−

(h) Working in the CM frame, integrate over the final-state particle phase space to
get a cross section. Restore the finite electron mass to compute p1 · k in terms of

z and θeγ, and show that the θeγ integral gives log
Q2

0

m2
e
, where Q0 = p1 + p2 (you

can drop things like log 2 since we are assuming a limit of Q2
0 � m2

e). Finally,
rearrange the rest of the phase space integral to find

σe+e−→µ+µ−γ =

∫
dz fγ(z)× σe+e−→µ+µ−(Qz)

where the 2→ 2 cross section is evaluated at a CM momentum Qz = (1−z)p1+p2,
and f(z) is given by Schwartz (20.73).

3. Resonances and branching ratios (10 points). Peskin problem 5.1.
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4. Narrow width approximation with spin (20 points). Peskin problem 7.3.

5. e+e− annihilation as a function of energy (15 points). Sketch the total cross
section for e+e− → anything as a function of the center-of-mass energy

√
s, from√

s = 0 to
√
s = 3 GeV (just below the J/ψ). Don’t forget that the electron mass

is not actually zero! Remember that free quarks do not exist, so the annihilation
products must be either leptons or hadrons, whose masses you can look up in the PDG
(see problem 3). The R ratio plot on the course website will help you with the hadronic
final states above a few hundred MeV. Note carefully any resonances (hadronic and
leptonic), and qualitatively explain the height and width of the resonance peaks (you
can look up the relevant parameters for these). Justify the numerical value of the cross
section at

√
s = 3 GeV.

6. Lepton-number-violating muon decay (25 points). Suppose that the photon
coupled electrons to muons through a gauge-invariant term in the Lagrangian L ⊃
ceσαβµFαβ + h.c., where e and µ are the electron and muon spinors, σαβ = i

2
[γα, γβ],

and Fαβ is the QED field strength. Show that c has dimensions of inverse mass so that
it can be written as 1/Λ where Λ is an effective mass scale. Compute Br(µ→ eγ); you
may neglect the electron mass (since mµ � me) but not the muon mass. Look up the
constraints on the branching ratio Br(µ→ eγ) and use this to put a bound on Λ. (We
will discuss these kind of terms more in the last two weeks of the course.)

7. Practice with adjoint representations (15 points).

(a) Recall that the fundamental representation of the Lie algebra su(2) is given by
T a = 1

2
σa. Construct the adjoint representation T aadj. (since there are 3 elements

of the Lie algebra, these should be three 3× 3 matrices) and compute the Killing
form Tr(T aT b) and the quadratic Casimir

∑
a T

aT a.

(b) There is another three-dimensional Lie algebra known as the Heisenberg algebra,
which has elements X, Y , and Z satisfying [X, Y ] = Z, [X,Z] = 0, and [Y, Z] =
0. Construct the adjoint representation and compute the Killing form and the
quadratic Casimir.

8. Spin of the gluon (40 points). Peskin problem 10.2. For parts (b)-(d), you can
either use the explicit spinors suggested in part (b), or the method of problem 2 above,
whichever you find more convenient (this is easier than problem 2 because there are
fewer gamma matrices!). This problem demonstrates that we can determine the spin of
the gluon from kinematic distributions in e+e− annihilation, just as we can determine
the spin of the quark from the behavior of the proton structure functions W1 and W2

in deep inelastic scattering, using the results of problem 1.

3


