The strong interaction at low energies
Let's 90 all the way beck to the QCD Lagrangian, considering on b the two lightest quarks. Setting their masses to zero for now,

$$
L=-\frac{1}{4} F_{\mu v}^{a} F^{\mu r a}+i u_{L}^{+} \bar{\sigma}^{\mu} D_{\mu} u_{L}+i u_{R}^{+} \sigma^{n} D_{\mu} u_{R}+i d_{L}^{+} \bar{\sigma}^{\mu} D_{\mu} d_{L}+i d_{k}^{+} \sigma^{\mu} D_{\mu} d_{R}
$$

This is invariant under sepante global left-and right-handed rotations:
$\binom{u_{L}}{d_{L}} \rightarrow q_{L}\binom{u_{L}}{d_{L}}$ and $\binom{u_{R}}{d_{R}} \rightarrow q_{R}\binom{u_{R}}{d_{R}}$ where $g_{L} \in \operatorname{SU}(2)_{L}$
and $q_{R} \rightarrow$ SU(2) $)_{R}$. We san last week that $9 \bar{q}$ interactions are attractive. What hoppers if the ground state of the universe has a condensate of $9 \overline{9}$ pairs? (This is analogous to Cooper pairs in a superconductor.)
Let's assure $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle=V^{3}$ (remember $[u]=\frac{3}{2}$, so this operator has dimasion 3). This is Lorentz-invaiant, but it breaks the L and R symmetries: $\bar{u} u=u_{L}^{+} u_{R}+u_{R}^{+} u_{L}$, so $\langle\bar{u} u\rangle$ is not invariant unless $q_{L}=q_{R}$. This is ow first example of a spontaneously broken symmetry:

$$
\begin{aligned}
& \left.\mathrm{SU}_{(2)_{L}} \times \mathrm{SU}_{2}(2)_{R} \rightarrow \operatorname{SUC}_{2}\right)_{V} \\
& q_{2} \quad q_{R} \quad q_{2}=q_{R} \text { : this symmetry is called (strong) isospin }
\end{aligned}
$$

"Spontaneous" because the Lagrangian is invaiout under the symmetry, but the ground state is not, we call $\langle\bar{u} u\rangle$ a vacuum expectation value: it's an order parameter for the symmetry breaking.

Armed with the hypothesis of chiral symmetry breaking, we can understand the spectrum and interactions of light mesons without knowing a_{n}, thing about $Q C D$! This is an extremely powetul tool, which will serve as a warmup for a similar effect at high energies, the Higgs mechanism.

First, let's parameterize the symmetry breaking. After the phase transition, the degrees of freedom are no longer quacks and gluons, but scalar mesons. Let's package them into a scalar field \sum, Which we declare to transform as $\Sigma(x) \rightarrow q_{L} \Sigma(x) g_{R}^{+}$. Likewise, $\Sigma^{+} \rightarrow g_{R} \sum^{+} q_{2}{ }^{+}$. \sum is a 2×2 complex matrix, and the trastomation rule is just ordinary matrix multiplication.

To see how to arrange for chiral symmetry breaking, let's first consider a simpler toy example with a complex scalar \varnothing which is just a number, not a matrix. Consider the following Lagrangian:

$$
\mathcal{L}=\partial_{\mu} \phi^{\theta} \partial^{2} \phi+m^{2} \phi^{\theta} \phi-\frac{\lambda}{4}\left(\phi^{\theta} \phi\right)^{2}
$$

This looks just like the scalar Lagrangian we considered much earlier in the cows but the mass term has the wrong sign! If we write $\alpha=T-V$, the quadratic and quartic terns are like a potential energy, which we can plot as a function of $\operatorname{Re}(\phi)$ and $\operatorname{Im}(\phi)$:

(Inn bud at 30 renderings.) What this is meant to show is that $\phi=0$ is an unstable maximum of the potential. All Feynman diagrams we have computed thus far are an expansion around zero field values, so to fix this, we seed to find the true minimum of the potetial, Which will describe the ground state of the theory.

But which ground state? The potential is a function only of $|p|$.
$V(x)=-m^{2} x^{2}+\frac{\lambda}{4} x^{4}$, where $x=|\phi|$. Find minimum by $V^{\prime}=0, V^{\prime \prime}>0$:
$V^{\prime}(x)=-2 m^{2} x+\lambda x^{3}=x\left(-2 m^{2}+\lambda x^{2}\right) . \quad x=0$ is unstable maximum, so
Solve $-2 m^{2}+\lambda x_{0}^{2}=0 \Rightarrow x_{0}=\sqrt{\frac{2 m^{2}}{\lambda}}$ (take positive value since $|0|>0$).
Check: $v^{\prime \prime}(x)=-2 m^{2}+3 \lambda x^{2}, v^{\prime \prime}\left(x_{0}\right)=-2 m^{2}+3 \lambda\left(\frac{2 m^{2}}{\lambda}\right)=4 m^{2}>0$
(as long as $\lambda>0$ so x_{0} is real)
Conclusion: there is a continuous family of minima,
$\phi=\sqrt{\frac{2 m^{2}}{\lambda}} e^{i \theta}$, parameterized by θ. The theory has to pick one:
by selecting a particular value of the angle along the circle, we are spontaneously, breaking the U(1) rotation symmetry of the Lagrangian. Without loss of generality, define ψ such that the minimum is at $\theta=0$, and rewrite as
$\phi(x)=\left(x_{0}+\sigma(x)\right) e^{i \pi(x)}$, where $\sigma(x)$ and $\pi(x)$ are real. In other nods, we ore just writing $\phi=r e^{i \theta}$ in polar coordinates, and shifting the radial coordinate such that the ground state configuration has $\sigma(x)=\pi(x)=0$. By rewriting the Lagrangian in terms of σ and π, we can go back to using Feynman rules and forget about any complications from the wron-sion vas term. We will see this again next week.

Back to $\operatorname{suc}(2)_{L} \times \operatorname{su}(2)_{R}$. It should be plausible that we can arrange for a spontaneous breaking of this symmetry by genentizing the previous Lagrangian to matrices:"

$$
\alpha=\operatorname{Tr}\left(\partial_{m} \varepsilon^{+} \partial^{n} \varepsilon\right)+n^{2} \operatorname{Tr}\left(\varepsilon^{+} \varepsilon\right)-\frac{\lambda}{4}\left(\operatorname{Tr}\left(\varepsilon^{+} \varepsilon\right)\right)^{2}
$$

Con show (oH) that this Lagrangian is invariant under $\left.S U(2)_{L} \times S u C_{2}\right)_{R}$,
but the ground state is $\sum_{0}=\frac{V}{\sqrt{2}}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with $v=\frac{2 m}{\sqrt{\lambda}}$.
This ground state is not invariant under the full symmetry, since $g_{L} \Sigma_{0} g_{R}^{+}=\frac{v}{\sqrt{2}} g_{L} q_{R}^{+}$, but it is invariant if me take $q_{L}=g_{R}$, Since q_{l} and $p r e_{R}$ are witory matrices. Thus, this Lagrangian spontaneously breaks su(2) $\times \operatorname{su}(2)_{R}$ to the subgroup su(2) with $g_{L}=g_{R}$, as desired. As before, we con recurite Σ in "polar coordinates":
$\sum(x)=\frac{v+\sigma(x)}{\sqrt{2}} \exp \left(2 i \frac{\pi^{a}(x) \tau^{a}}{v}\right)$, where $\sigma(x)$ and $\pi^{a}(x)$ are real scabs, and $\tau^{a}=\frac{\sigma^{a}}{2}$. This reduces to \sum_{0} when $\sigma=\pi=0$, but it is not the most geneal 2×2 complex matrix. Instead, we want Σ to parameterize the space of possible vacua, which is $\frac{v}{\sqrt{2}} g_{L} g_{R}^{+}$, ie. a real constant times an $s u(2)$ matrix. We will actually go one step further: we will decouple o by taking $n \rightarrow \infty, \lambda \rightarrow \infty$ with v fixed. This means it costs infinite potential energy to charge σ, so it is "pined" at a constant value. The remaining degrees of freedom can be written as $U(x) \equiv \frac{\sqrt{2}}{v} \sum(x)=\exp \left(2 ; \frac{\pi^{n}(x) \tau^{a}}{F_{\pi}}\right)$. This is a witary matrix, satisfying $U^{+} U=\mathbb{1}$, and transforming as $U \rightarrow g_{L} U_{q_{R}}{ }^{+} . F_{\pi}$ is a constant with dimensions of mass. In this normalization, $\langle U\rangle=1$ which is invariant under $g_{2}=q_{R}$, so U parametrizes the $\operatorname{su}(2)_{L} \times \operatorname{su}(2)_{R}$ breaking while throwing anam all the information we don't know about later all, we have no idea whetter the Lagrangian we started with resembles the QCD Lagrangian at low energies).
Upshot: we want to write the most geneal Lagrangian for U, invariant under $S u(2)_{L} \times S U(2)_{R} . U^{+} U=\mathbb{I}$, a constant term, so this won't contribute to the equations of notion: we need derivatives. Lorentz invariance requires at least two derivatives, and must have on equal number of U and $u t$:

$$
\begin{array}{r}
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} u^{+}\right)+\theta\left(\partial^{4}\right) \Leftarrow \text { this is the chiral Lagrangian } \\
\quad \text { to lowest oder in derivatives }
\end{array}
$$

That was a lot of formalism: now to physics.
Let $\pi^{0}=\pi^{3}, \pi^{ \pm}=\frac{1}{\sqrt{2}}\left(\pi^{\prime} \pm i \pi^{2}\right)$ (π^{0} is real, π^{+}and π^{-}are complex conjugates)

$$
u=\exp \left[\frac{i}{F_{\pi}}\left(\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{-} \\
\sqrt{2} \pi^{+} & -\pi^{0}
\end{array}\right)\right]
$$

We will interpret the chiral Lagrangian as a theory of pions.
From the chiral Lagrangian, we observe:

- There are 3 (almost) massless pias. Every tern has derivatives, so there is no term like $m^{2} \pi^{2}$. This is an example of Goldstones Theorem: a spontaneously broken continuous global symmetry implies massless particles. We will explain te nonzero observed pion masses shot t ξ, but already this motivates why $m_{\pi}=130 \mathrm{MeV} \ll m_{p}=1 \mathrm{GeV}$: pions are Goldstone bosons of the spontaneously broken Chiral Symmetry of reassess $Q C D$. If also explains why there are 3 pions, corresponding to the 3 gereators of the broken su(2).
- Pion interactions are highly constrained. The Lagrassion is an infinite series in powers of π. The coefficient $\frac{F_{\pi}^{2}}{4}$ ensues the usual normalization for scalar kinetic terms:.

$$
\frac{F_{n}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} u \partial^{\mu} u^{+}\right)=\frac{1}{2}\left(\partial_{\mu} \pi^{0}\right)\left(\partial^{2} \pi^{0}\right)+\partial_{\mu} \pi^{+} \partial^{-} \pi^{-}+\ldots \quad(\theta H w)
$$

But there is also an infinite series of two-denvafive interactions.

$$
\frac{1}{F_{\pi}^{2}}\left(-\frac{1}{3} \pi^{0} \pi^{0} \partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-}+\ldots\right)+\frac{1}{F_{\pi}^{4}}\left(\frac{1}{18}\left(\pi^{+} \pi^{-}\right)^{2} \partial_{\mu} \pi^{2} n^{n} \pi^{0}+\cdots\right)+\theta\left(\frac{1}{F_{\pi}^{6}}\right)
$$

all of these coefficients ore completely fixed in terns of one parameter F_{π}. We will show in a couple weeks hon to determine F π from the π^{+}life tire. This rears that $\sigma\left(\pi^{+} \pi^{-} \rightarrow \pi^{\circ} \pi^{\circ}\right)$ is completely determined once the π^{+}lifetime is measured. Note that there are no odd pomes of π : no 3-point vertex even though this is Lorentz invariant, conserves charge, etc.

- The pion mass is proportional to square roots of the quark masses.

We can introduce up and down quark masses as
$L_{n}=\bar{q} M_{q}$ with $M=\binom{m_{n}}{m_{d}}$ and $q=\binom{u}{d}$. Clearly, this term breaks chiral symmetry, but we con still use it to unite a chirallyinvariant Lagrangian by letting M be a constant field with te same transformation properties as $u: M \rightarrow g_{L} M g_{R}{ }^{+}$.

$$
\begin{aligned}
& \Rightarrow L_{m}^{\prime}=\frac{v^{3}}{2} \operatorname{Tr}\left(M^{+} u+m u^{+}\right)
\end{aligned}
$$

The coefficient $\frac{V^{3}}{2}$ is fixed by $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle=v^{3}$, so the vacuum energies in L_{m} and \mathcal{L}_{m}^{\prime} are equal. We then have $n_{\pi^{o}}^{2}=n_{\pi^{ \pm}}^{2}=\frac{V^{3}}{F_{\pi^{2}}}\left(m_{n}+n_{d}\right)$. So approximate equality of charged and neutral pion masses is not a result of $m_{n}=m \lambda$, but rather $m_{n}+m_{d} \ll V$. Lattice $Q \subset D$ calculations confirm this relationship

- We can generalize SU(2) \rightarrow SU(3) to include the strange quark, but at the cost of sone accuracy since m s is of the some oder as V. But we expect 8 light mesons, which we identify as $\pi^{0}, \pi^{ \pm}, K^{0}, \bar{K}^{0}, K^{ \pm}$, and η, whose interactions are constrained by approximate su(3) flavor symmetry.

The chiral Lagrangian is an example of an effective field theory, containing forms of dimension 6 and higher. We will see more examples like this in the last weeks of the course

