Final step: integrate over phase space to obtain $\frac{d \sigma}{d \cos \theta}$.
For relativistic beans, $\left|\vec{v}_{1}-\vec{v}_{2}\right| \approx 2$ so

$$
d \sigma=\frac{1}{2 E^{2}} \times \frac{d^{3} p_{3}}{(2 \pi)^{3}\left(z_{1}\right)} \frac{d^{3} p_{4}}{\left(2_{1}\right)^{3}\left(2 E_{4}\right)}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times\left(|\mu|^{2}\right\rangle
$$

Split de (ta function into $\delta\left(E_{1}+E_{2}-E_{3}-E_{4}\right) \delta^{3}\left(\hat{p}_{1}+\vec{p}_{2}-\vec{p}_{3}-\vec{p}_{4}\right)$
Integrating over p_{4} sets $\vec{p}_{4}=-\vec{p}_{3}$.
$d^{3} \vec{p}_{3}=\left|\vec{p}_{3}\right|^{2} d\left|\overrightarrow{p_{3}}\right| d \cos \theta d \phi$. Matrix element doesn't depend on \varnothing so
integal gives 2π. Use $\delta\left(E_{1}+E_{2}-E_{3}-E_{4}\right)=\delta\left(E-2\left|\overrightarrow{p_{3}}\right|\right)$ to do $\left|\overrightarrow{r_{3}}\right|$ integral:
$E_{3}=E_{4}=\left|\vec{P}_{3}\right|=\frac{E}{2}$, remaining, intesiand is $\frac{2 \pi}{16 \pi^{2}} \frac{\left|\vec{P}_{3}\right|^{2}}{E_{3}^{2}} \times \frac{1}{2}=\frac{1}{16 \pi}\binom{$ factor of $1 / 1 /$ from }{$\delta\left(\cdots-2 \mid \vec{p}_{3}\right)}$

$$
\begin{aligned}
\Rightarrow d \sigma & =\frac{1}{32 \pi E^{2}} e^{4}\left(1+\cos ^{2} \theta\right) d \cos \theta \\
\frac{d \sigma}{d \cos \theta} & =\frac{e^{4}}{32 \pi E^{2}}\left(1+\cos ^{2} \theta\right)=\frac{\pi \alpha^{2}}{2 E^{2}}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

where $\alpha=\frac{e^{2}}{4 \pi}$
Two sharp predictions cross section depends on CM energy as $\frac{1}{E^{2}}$, and angular distribution of muons is $1+\cos ^{2} \theta$. Both borne out by experinat!

Let's now understand the $1+\cos ^{2} \theta$ dependence another way. In the high-easy limit, $u(p)=\binom{\sqrt{p \cdot \sigma} \xi_{s}}{\sqrt{p-\sigma} \xi_{s}}=\left(\begin{array}{c}\left(\begin{array}{cc}\sqrt{E-p} & \sqrt{E+p}) \xi_{s} \\ \left(\begin{array}{cc}\sqrt{E+p} & \\ & \sqrt{E-p}) \xi_{s}\end{array}\right) \underset{E=p}{ } \sqrt{2 E}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \xi_{s} \\ \left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \xi_{s}\end{array}\right) ~\end{array}\right.$

So if $\xi_{5}=\binom{1}{0}$, top two components are zero, and if $\xi_{5}=\binom{0}{1}$, bottom two we zen. Since $u=\binom{x_{2}}{x_{n}}, \xi_{5}=\binom{1}{0}$ is rightharbed, $\xi_{5}=\binom{0}{1}$ is left-handed (fancier was to any this: they are eisentates of he licit), $h=\hat{p} \cdot \vec{s}=\frac{1}{2} \hat{p} \cdot(\vec{\sigma} \vec{\sigma})$) Similarly, $\left.v(p)=\left(\begin{array}{cc}\sqrt{p \cdot \sigma} & \eta_{s} \\ -\sqrt{p \cdot \sigma} & \eta_{s}\end{array}\right) \rightarrow \sqrt{2 E}\left(\begin{array}{ccc}0 & 0 \\ 0 & 1\end{array}\right) \eta_{s}\right)$
But $r^{0} r^{\mu}=\left(\bar{\sigma}^{\wedge} \sigma^{n}\right)$, so terms like $\bar{u} V^{\mu} v$ vanish unless u and v are bot right-handed or left-haded

In fact, we already knew this because the original Layrangion was $e_{R}^{+} \sigma^{m} e_{R} A_{\mu}+L^{+} \bar{\sigma}^{n} L A_{\mu}$; left and right couple separately to photon.

Let's consider

right-haded
particle $=$
antiparticle =
right-houled spinor
right-harbed spinor

Note: e^{t} has momentum in $-\hat{2}$ direction, so $\binom{0}{1}$ is right-handed spinor cather then ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$

$$
\begin{aligned}
e_{R}^{+} \sigma^{m} e_{R} & =\sqrt{2 E}(0,-1) \sigma^{m} \sqrt{2 E}\binom{1}{0} \\
& =2 E\left((0,-1)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{0},\left(\begin{array}{l}
0,-1)
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0},(0,-1)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0},(0,-1)\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}\right) \\
& =2 E(0,-1,-i, 0)
\end{aligned}
$$

con interpret this 4 -vector as a circularly polarized virtual photon.
Now for muon port of diagram. Consider same spin stats:

$\mu_{R}^{+} \sigma^{\mu} \mu_{R}$ is a Lorentz 4-vector. Under a rotation by θ, it must tranatom into $2 E(0,-\cos \theta,-i, \sin \theta)$. Because it represents out going particles, we need to take complex conjugate (i.e. flip roles of u and v)

$$
M_{e_{R}^{-} e_{L}^{-1} \rightarrow \mu_{R}^{-} M_{L}^{+}} \sim(0,-\cos \theta,+i, \sin \theta) \cdot(0,-1,-i, 0)=-(1+\cos \theta)
$$

Note that this vanishes at $\theta=\pi$.

$S_{2}=+\hbar$

forbidden by angular momentum conservation!
Allowed if we restore m_{m}.

Quantum corrections in QED

The scattering processes we computed last week were analogous to classical processes. for example, Miller scattering can be related to Coulomb scattering in the appropriate limit. This weele, we will look at quantum processes with no classical analogue. At low energies, we will derive the quantum correction to the magnetic moment of the electron. At high energies, we will see how quantum field peony treats photon emission (bremsstrahlung), and how the coupling "constant" actually depends on energy scale (next week).

Let's start first with low energies.

$$
(i \not \varnothing-n) \psi=0 \text {. Multiply on right by iøf+m: }
$$

$\left(\varnothing^{2}+n^{2}\right) \psi=0$. D^{2} is a differential operator in spine- space, let's compute it:

$$
\begin{aligned}
\left(\partial_{\mu}\right. & \left.+i e A_{\mu}\right) \gamma^{\mu}\left(\partial_{v}+i e A_{v}\right) \gamma^{v}=\left(\partial_{\mu}+i e A_{\mu}\right)\left(\partial_{v}+i e A_{v}\right) \gamma^{\mu} \gamma^{v} \\
& =\frac{1}{4}\left\{\partial_{\mu}+i e A_{\mu}, \partial_{v}+i e A_{v}\right\}\left\{\gamma^{\mu}, \gamma^{v}\right\}+\frac{1}{4}\left[\partial_{\mu}+i e A_{\mu}, \partial_{v}+i e A_{v}\right]\left[\gamma^{\mu}, \gamma^{v}\right]
\end{aligned}
$$

where $[A, B]=A B-B A$ and $\{A, B\}=A B+B A$
First term can be simplified using $\left\{r^{\mu}, r^{v}\right\}=2 \eta^{m v}$, so

$$
\frac{1}{4}\left\{\partial_{\mu}+i e A_{\mu}, \partial_{\nu}+i e A_{\nu}\right\}\left\{\gamma^{\mu}, r^{\mu}\right\}=\frac{1}{2}(2)\left(\partial_{\mu}+i e A_{\mu}\right)\left(\partial^{\mu}+i e A^{\mu}\right) \equiv D^{2}
$$

Second tern: $\left[\partial_{\mu}+i e A_{\mu}, \partial_{v}+i e A_{v}\right]=\partial_{\mu} \partial_{v}+i e \partial_{\mu} A_{v}+i e \not A_{v} \partial_{\mu}+i e A_{\mu} \partial_{v}-e^{2} A_{\mu} / A_{v}$

$$
\begin{aligned}
& -\partial_{\mu} \partial_{\mu}-i e \partial_{v} A_{\mu}-i e \partial_{\mu} \partial_{v}-i c A \partial_{\mu}+e^{2} A_{\mu} A_{v} \\
& =i e F_{\mu v}
\end{aligned}
$$

Recall from Hi 2 that $\frac{i}{4}\left[\gamma^{\prime \prime}, r^{v}\right]=S^{\mu v}$, De Locate generators actors on spines.

So $D^{2}=D^{2}+e F_{N v} S^{m v}$, and Dirac equation coupled to a gauge fled 2 implies $\left(D^{2}+n^{2}+e F_{w} S^{n v}\right) \psi=0$.
Writing it out explicit icy, $S^{0^{i}}=-\frac{i}{2}\left(\sigma^{\sigma^{i}}-\sigma^{i}\right)$ and $S^{i j}=\frac{1}{2} \epsilon_{i j k}\left(\sigma^{\sigma^{k}} \sigma^{-k}\right)$.

$$
\begin{aligned}
& F_{o i}=E_{i}, F_{i j}=-\epsilon_{i j k} B_{k}, s_{0} \\
& \left\{D^{2}+m^{2}-e\binom{(\vec{B}+i \vec{E}) \cdot \vec{\sigma}}{(\vec{B}-i \vec{E}) \cdot \vec{\sigma}}\right\} \psi=0
\end{aligned}
$$

$\left(D^{2}+m^{2}\right) \varnothing$ is the K(ein-Gordon equation for a charged scalar coupled to a gauge field. The last term is unique to spinous: they have a magnetic moment! You will see has in more detail in How (to Schumtz 10, 1). for a non-relativistic Hamilturim $H=g \frac{e}{2 m} \vec{B} \cdot \vec{S}$, the Coefficient of $\frac{e}{4} F_{\sim v} \sigma^{\sim v}$ (where $\sigma^{\sim v}=\frac{i}{2}\left[r^{\sim}, r^{v}\right]=2 s^{n v}$) gives g. Dirac equation predicts $g=2$. QFT Says $g=2+\frac{\alpha}{\pi}+\ldots=2.00232 \ldots$
Let's redeive $g=2$ using Feynman diagrams.
$i \mu^{\mu}=\left\{\begin{array}{l}p=-i e \bar{u}\left(q_{2}\right) r^{m} u\left(q_{1}\right) \text {. we enforce momentum conservation }\end{array}\right.$ by $p=q_{2}-q_{1}$, but do not require $p^{2}=0$, since the photon may not be on-stell (indeed, static B-fields lan't propagate)
Note (hat $\bar{u}\left(q_{2}\right) \sigma^{n v}\left(q_{2} q_{1}\right) v\left(q_{1}\right)=\frac{i}{2} \bar{u}\left(q_{2}\right) \gamma^{\mu} \gamma^{v}\left(q_{2} \bar{q}_{1}\right)_{v} u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(q_{2}\right) r^{v} r^{\sim}\left(q_{2}-q_{1}\right)_{v} u\left(q_{1}\right)$

$$
=\frac{i}{2} \bar{u}\left(a_{2}\right) r^{m}\left(q_{2}-q_{1}\right) u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(a_{2}\right)\left(q_{2}-x_{1}\right) \gamma^{\omega} u\left(a_{1}\right)
$$

Spinurg are on-stell, so they satisfy the Dirac equation $\left(d_{1}-m\right) u\left(a_{1}\right)=\bar{u}\left(a_{2}\right)\left(a_{2}-m\right)=0$

$$
\Rightarrow \frac{i}{2} \bar{u}\left(q_{2}\right) r^{m}\left(q_{2}-m\right) u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(q_{2}\right)\left(m-q_{1}\right) r^{m} u\left(q_{1}\right)
$$

Anticomunte \mathscr{g}_{2} to left: $r^{\mu} \mathscr{g}_{2}=-g_{2} r^{\mu}+2 q_{2}^{\mu} \cdot \bar{u}\left(q_{2}\right) g_{2}=n \bar{u}\left(q_{2}\right)$.
Similar manipulation on second term gives

$$
\bar{u}\left(q_{2} \sigma^{n v}\left(q_{2}-q_{1}\right) v u\left(q_{1}\right)=-i u\left(q_{2}\right)\left(q_{1}+q_{2}\right)^{m} u\left(q_{1}\right)+\operatorname{iim} \bar{u}\left(q_{2}\right) r^{\mu} u\left(q_{1}\right)\right.
$$

So we can rewrite the QED vertex as

$$
M^{\wedge}=-\frac{e}{2 m}\left(q_{1}+q_{2}\right)^{\mu} \bar{u}\left(q_{2}\right) u\left(q_{1}\right)-\frac{e}{2 m} i \bar{u}\left(q_{2}\right) \sigma^{\mu v} p_{v} u\left(q_{1}\right)
$$

This is just $F_{v v} \sigma^{n v}$
in roreturn space: $\partial_{v} A_{\mu} \rightarrow-i \rho_{v} t_{m}$
\Rightarrow any amplitude of the form $i \bar{u}\left(q_{2}\right) \sigma^{r v} p_{v} u\left(q_{1}\right)$ contributes to g. can define g as $\frac{-4 m}{e}$ times the coefficient of this tern.

Here is the next contribution:
$i \mu=$

This is our first example of a loop diagram.
It follows all the usual Feynman rules, except there is one undetermined momentum k, over which we integrate $\int \frac{d^{4} k}{(2 \pi)^{4}}$

This diagram has two additional QED vertices, so it is proportional to a times the $\frac{e}{n}$ from the Dirac contribution.
Write down the amplitude, proceeding ballads along fermion lines:

$$
i \mu=(-i e)^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \bar{u}\left(q_{2}\right) \frac{r^{v}\left(-i \varphi_{v \alpha}\right)}{\left(k-q_{1}\right)^{2}} \frac{i(p+k+m)}{(p+k)^{2}-m^{2}} \gamma^{m} \frac{i(k+m)}{k^{2}-m^{2}} r^{\alpha} u\left(q_{1}\right)
$$

(factor out constants ar spino-s) $=-e^{3} \bar{u}\left(q_{2}\right)\left[\int \frac{d^{4} k}{(2 \pi)^{r}} \frac{r^{v}(p+x+m) r^{m}(k+m) r_{v}}{\left(k-q_{1}\right)^{2}\left((p+k)^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)}\right] u\left(q_{1}\right)$
There are a standard set of tricks for evaluating this kind of integral:

- Combine the 1 denominators into the form $\frac{1}{\left(k^{2}-\Delta\right)^{N}}$, at he expose of an integral over auxiling Feynman parameters.
- Use spherical symmetry to drop terns with old powers of k.
- Use standard idatities for spherical volumes in 4 dimensions, leaving on b an ordinary integral $\int \frac{k^{2 l} d k}{\left(k^{2}-\Delta\right)^{N}}$ times some r matrices.
We will outline the calculation here, you'll fill in the details for HW. (marks a derivation or result left for HW)
A First, we need the identity $\frac{1}{A B C}=2 \int_{0}^{1} d x d y d z \int(x+y+z-1) \frac{1}{[x A+y B+z C]^{3}}$.
Here, $A=k^{2}-m^{2}, B=(p+k)^{2}-m^{2}, C=(k-q,)^{2}$

$$
\begin{aligned}
x A+y B+2 C & =x k^{2}-x m^{2}+y p^{2}+2 y p \cdot k+y k^{2}-y m^{2}+2 k^{2}-22 k \cdot \eta_{1}+z q_{1}^{2} \\
& \left.=k^{2}+2 k \cdot\left(y p-2 q_{1}\right)+y p^{2}+2 q_{1}^{2}-(x+y) m^{2} \quad \text { (using, } x+s+z=1\right)
\end{aligned}
$$

Complete the square: $\left(k_{\mu}+y p_{m}-2 q, \mu\right)^{2}=k^{2}+2 k \cdot(y p-2 q)+y^{2} p^{2}+z^{2} \eta_{1}^{2}-2 y 2 p-q$, So $\times A+B B+z C=\left(k_{\mu}+y p_{n}-2 q_{1, n}\right)^{2}-\Delta$ where $\Delta=\left(y^{2}-y\right) p^{2}+\left(z^{2}-z\right) q_{1}^{2}$

$$
-2 y 2 p \cdot q_{1}+(x+y) n^{2}
$$

- Use $q_{1}{ }^{2}=n^{2}:\left(z^{2}-z\right) n^{2}+(x+y) n^{2}=\left(2^{2}-z+(1-z)\right) n^{2}=(1-z)^{2} n^{2}$
- use $p=q_{2}-q_{1}:\left(p+q_{1}\right)^{2}=q_{2}^{2}, p^{2}+2 p \cdot q_{1}+m^{2}=m^{2} \Rightarrow 2 p \cdot q_{1}=-p^{2}$

$$
\left(y^{2}-y\right) p^{2}+y z p^{2}=\left(y^{2}-y+y(x-x-y)\right) p^{2}=-x y p^{2}
$$

So $\Delta=-x y p^{2}+(1-z)^{2} n^{2}$
(Large variables to $k^{\prime}=k+y p-2 q$, denominator- is now $\left(k^{\prime 2}-\Delta\right)^{3}$.
This chare of variables has mit Jacobian: $d^{4} k^{\prime}=d^{5} k$

* Perform this shift in the numerator $N^{\mu}=\gamma^{v}(p+x+m) \gamma^{m}(x+m) r_{v}$, do lots of algebra using Gordon ilentify and $x+y+2=1$ to get $\bar{u}\left(q_{2}\right) N^{\mu} u\left(q_{1}\right)=i \underbrace{i \bar{u}\left(q_{2}\right) \sigma^{\mu \nu} p_{v} u\left(q_{1}\right) \times(-2 n) z(1-2)}+\cdots$
this is me piece
coefficient
to see what happens to the we wanted will give 9 other pieces, take QFT!
Normalizing by $-\frac{e}{2 m}$, De contribution to g (convationally called F_{2}) is

$$
\begin{aligned}
& F_{2}\left(p^{2}\right)= \frac{2 m}{e}\left(4 i e^{3} n\right) \int_{0}^{1} d x d s d z z(1-z) \delta(x+s+z-1) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{1}{\left[k^{\prime 2}-\Delta\right]^{3}} \\
& 2 \text { frimcoeff..1. } \\
& 2 \operatorname{trom} 2 \operatorname{six} x_{s} d z
\end{aligned}
$$

Note that Δ depends on $x, y, 2$ s, we have to do $\int l^{4} k^{\prime}$ integral first. $k^{\prime 2}$ is a Lorentzian dot product, while we would prefer a Euclidean dot product to do he integral in spherical coordinates.
Ore subtlety from QFT: all propagators have an infinitesimal positive imaginary part. In the $k^{\prime o}$ plane, this pushes the poles off the real axis: $\left(k^{\prime}\right)^{2}-\Delta+i \epsilon=0 \Rightarrow k^{\prime 0}= \pm \sqrt{\dot{k}^{\prime 2}+\Delta} \mp i \epsilon$

Rotate integration Contour $k^{\prime 0} \rightarrow$ ik'o without hitting any poles

$$
\begin{aligned}
\Rightarrow \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{1}{\left[k^{\prime 2}-\Delta\right]^{3}} & =\frac{-i}{(2 \pi)^{4}} \int d^{4} k_{E} \frac{1}{\left[k_{E}^{2}+\Delta\right]^{3}} \\
& =\frac{-i}{32 \pi^{2}} \frac{1}{\Delta}
\end{aligned}
$$

The magnetic moment represents a response to static E and B Field, so take $p=0 \Rightarrow \Delta=(1-2)^{2} n^{2}$

$$
F_{2}(0)=\frac{e^{2}}{4 \pi^{2}} \int_{0}^{1} d x d y d z \frac{z}{1-2} \delta(x+y+z-1)=\frac{e^{2}}{8 \pi^{2}}=\frac{\alpha}{2 \pi}
$$

So finally, $q=2\left(1+F_{2}(0)\right)=2+\frac{\alpha}{\pi}+\theta\left(\alpha^{2}\right)$
Continuing to many orders in α, this is the most precise comparison between theon and experiment that human'ty has ever made. However, it work, for the electron but not for de muon? There is a 3σ discrepancy for g_{μ} which is currently being actively investigated by experimentalists (9-2 at Fermilab) and Diarists (lattice $Q C D$ contributions? new particles?)

