Electroweak interactions
At long last, we are ready to consider the full SM Lagrangian. Last week we studied the gauge sector, this week we will look at fermion interactions and Yukava terms.

$$
\alpha \supset-Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}-Y_{i j}^{n} Q_{i}^{+} \tilde{H} u_{R}^{j}+\text { h.c. }
$$

As we did last week, we will first set $h=0$, then put it back in with $v \rightarrow v$ th.

$$
\alpha_{\text {ynkaua }} \supset-\frac{v}{\sqrt{2}} e_{L}^{+} y^{e} e_{R}-\frac{v}{\sqrt{2}}\left[d_{L}^{+} y^{d} d_{R}+u_{L}^{+} y^{u} u_{R}\right]+\text { h.c. }
$$

where $y^{e}, y^{d}, y^{u}$ are $3 \times 3$ matrices. To find the mass eigestates (which will represent propagating particles), we need to diagonalize these matrices. Focus on quarks first.
Math fact: an arbitrary complex matrix may be diagonalized with two mitory matrices:

$$
\begin{aligned}
& y_{d}=U_{d} M_{d} K_{d}^{+} \\
& y_{u}=U_{u} M_{u} K_{u}^{+}
\end{aligned}\{\quad U, K \text { mitary; M diagonal and real }
$$

(This works because $y^{+}$is Hermitian, so it has cell eigenvalues, ad $y y^{+}=U M^{2} U^{+}$, but the extra matrix $K$ is needed to "take (e) square root")

$$
\mathcal{L}_{\text {quark }}>-\frac{v}{\sqrt{2}}\left[d_{L}^{+} u_{d} M_{l} K_{d}{ }^{+} d_{R}+u_{L}^{+} U_{n} M_{n} K_{n}^{+} u_{R}\right] \text { the. }
$$

Now, rotate the quart field $d_{R} \rightarrow K_{d} d_{R}, d_{L} \rightarrow U_{d} d_{L}$, $u_{R} \rightarrow K_{u} u_{R}, u_{L} \rightarrow u_{n} u_{L}$. The mass terms are now diagonal:

$$
\underset{\substack{\text { hark } \\ \text { y hank }}}{ }>-m_{j}^{1} d_{L}^{+j} d_{R}^{j}-m_{j}^{u} u_{L}^{+j} u_{R}^{j}+h . c .
$$

where $M_{j}{ }_{j} u$ are the diagonal elevate of $\frac{v}{\sqrt{2}} M^{u, d}$

However, the fermion kinetic terms change under this field redefinition. Let's look at right-handed fields (which don't transform under su(2) first:
$\mathcal{L}_{R} \supset u_{R}^{+i}\left(i \sigma \cdot \partial+\frac{g}{\cos \theta_{\omega}} Q_{2}^{u} \sigma \cdot 2+\frac{2}{3} e \sigma \cdot A\right) u_{R}^{i}+d_{R}^{+i}\left(i \sigma \cdot \partial+\frac{y}{\cos \theta \omega} \theta_{z}^{d} \sigma \cdot 2-\frac{1}{3} e \sigma \cdot A\right) d_{R}^{i}$ where $Q_{2}{ }^{n}=-\frac{2}{3} \sin ^{2} \theta_{w}, Q_{2}^{d}=\frac{1}{3} \sin ^{2} \theta_{w}$
The covariant derivative is diagonal in flavorspace, so field rotations do not charge the fermion interactions with neutral gauge bosons: the SM has no flavor-changing neutral currents at tree level (though processes like $b \rightarrow 5 \gamma$ do arise at loop level, they are highly suppressed, so searching for these processes is a good way to look for physics beyond the SM). Thus the matrices $K$ completely drop out.
On the other hand, the left-haded terms are

$$
\left.\mathcal{L}_{L}\right)\left(u_{L}^{+} d_{L}^{+}\right)^{i}\left[i \bar{\sigma}_{\cdot \alpha}+\bar{\sigma}^{-}\left(\begin{array}{cc}
\frac{9}{\cos \sigma_{\omega}}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \omega_{\omega}\right) z_{\mu}+\frac{2}{3} e A_{\mu} & \frac{9}{\sqrt{2}} w_{\mu}^{+} \\
\frac{9}{\sqrt{2}} w_{\mu}^{-} & \frac{9}{\cos \theta^{2}}\left(-\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{\omega}\right) z_{\mu}+\frac{2}{3} e A_{\mu}
\end{array}\right)\right]\binom{u_{L}}{d_{L}}^{i}
$$

The off-dingonal terms involving the $W^{ \pm}$mix $u p$ and down, so under the field redefinitions $u_{L} \rightarrow u_{n} u_{L}, d_{L} \rightarrow u_{d} d_{L}$, these become

$$
\mathcal{L}_{L} \supset \frac{g}{\sqrt{L}}\left[w_{\mu}^{+} u_{L}^{+i} \bar{\sigma}^{\mu}(V)_{i,} d_{L}^{j}+w_{\mu}^{-} d_{L}^{+i}\left(v^{+}\right)_{i j} u_{L}^{j}\right]
$$

where $V \equiv u_{u}^{+} u_{d}=\left(\begin{array}{ccc}v_{u d} & v_{u s} & v_{u b} \\ v_{c d} & v_{c s} & v_{c_{b}} \\ V_{t d} & v_{t s} & v_{t b}\end{array}\right)$ is the Cabib6o-Kobay
Experimataly, all of these entries are nonzero! This means that the weak interaction mixes flavors, but only for left-handed fermion fields.

Let's count the number of parameters in the CKM matrix $V$.
It's unitary, since $V^{+} V=u_{d}^{+} u_{n} u_{n}{ }^{+} u_{1}=1$, ad $3 \times 3$ so it has 9 real parameters. However, there is still some redundancy, since the transformations $d_{L}^{j} \rightarrow e^{i \alpha,} d_{L}^{j}$ $u_{L}^{j} \rightarrow e^{i \beta j} u_{L}^{j}$

$$
d_{R}^{j} \rightarrow e^{i \alpha_{j}} d_{R}^{j} \quad u_{R}^{j} \rightarrow e^{i \beta_{j}} u_{R}^{j}
$$

leave the mass terms invariant. There is one phase angle for each flavor, so this is a $U(1)^{6}$ symmetry, which is a subgrap of the Su(3) ${ }^{3}$ quark flavor symmetry when the Yukar- couplings are absent. By performing these 6 transformations, we can eliminate 5 arbitrary phases in $V$ : There is one phase remaining, since taking $\alpha_{j}=\beta_{j}=\theta$ leaves $V$ invariant. Thus $V$ contains 3 real angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one complex phase $e^{i \delta}$. (More on this next week.)
What about the leptons? The only ynkawa term is $e_{L}^{+} y^{e} e_{R}$, so we can diagonalize $y^{e}$ as $y^{e}=U_{e} M_{e} K_{e}^{+}$. Taking $e_{R} \rightarrow K_{e} e_{R}$ and $e_{L} \rightarrow U_{e} e_{L}$, we get charged lepton mars terms $m_{j}^{e} e_{L}^{+} e_{R}^{j}+$ here., where $m$; are the diagonal elements of $M_{e}$. The analogue of $M_{v}$, the neutrino mass matrix, is not in the Starbad Model Lagraysion but may be parameterized by a matrix called the PMNS matrix. However, since neutrinos (unlike quarks) can only" be defected via their interaction with the $W$, it is often more convenient to leave the Lagrasian diagonal in flavor space and consider the mixing as part of the propagation of neutrinos (more on this next lecture).
(there is also neutrino neutral current scattering, through the 2 , but $W$ is much easier) Now that we have defined the fields in terms of physical mass eigenstates, we can write down the electroweak $(\operatorname{suc}(2) \times u(1))$ terms in the Lagrangian. Since the $L$ ad $R$ fields have the same elect tic changes after $\operatorname{su}_{2}(2)_{L} \times u(1)_{>} \rightarrow u(1)_{E M}$, it is conventional to combine $L$ add $R$ chiral Fermion fields into a single Dirac spinor, as we did for the electron in QED. But because the WI only couple to $L$ Fheidr,
we need to introduce the left-and cight-handed projectors;
$P_{R}\binom{\psi_{L}}{\psi_{R}}=\binom{0}{\psi_{R}}, \quad P_{L}\binom{\psi_{L}}{\psi_{R}}=\binom{\psi_{r}}{0}$. Explicitly,
$P_{R}=\frac{1+\gamma^{9}}{2}=\left(\begin{array}{c}0 \\ \\ 1\end{array}\right)$
where $\gamma^{5}=\left(\begin{array}{lll}-\mathbb{1} & \\ & \mathbb{I}\end{array}\right)$, which satiafies
$P_{L}=\frac{1-r^{5}}{2}=\left(\begin{array}{ll}n & 0\end{array}\right) \quad\left(r^{5}\right)^{2}=\mathbb{1}_{4 \times 4}$ and $\left\{r^{5}, r^{\mu}\right\}=0$.
(ye, this rears the $r$ indices $900,1,2,3,5 \ldots$ blare early celutivits notetun!)
In practice, this just rears we can use $\gamma^{m}$ instead of $\sigma^{-}$and $\sigma^{m}$.
The electroucak interaction terms in the mass basis con be compactly written

$$
\begin{aligned}
\mathcal{L}_{E W} & =\frac{e}{\sin \theta_{w}} Z_{\mu} J_{Z}^{\mu}+e A_{\mu} J_{E M}^{\mu}+\frac{e}{\sqrt{2} \sin \theta_{w}}\left[w_{\mu}^{+} \bar{u}_{L}^{i} \gamma^{\mu}(v)_{i} \cdot d_{L}^{j}+w_{\mu}^{-} \bar{d}_{L}^{i} \gamma^{\prime}\left(v^{+}\right)_{i} u_{L}^{j}\right] \\
& -\frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{e}_{L} \not \psi_{\bar{v}_{e}}+\bar{\mu}_{L} \not \mathscr{V}_{\mu} \bar{v}_{L}+\bar{\tau}_{L} \mathscr{W}_{\tau}\right]+h . c .
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{E M}^{M}=\sum_{i} Q_{i}\left(\bar{\psi}_{L}^{i} \gamma^{\mu} \psi_{L}^{i}+\psi_{R}^{i} \gamma^{\mu} \psi_{R}^{i}\right) \\
& \left.J_{2}^{\mu}=\frac{1}{\cos \theta_{w}}\left[\left(\sum_{i} \bar{\psi}_{L}^{i} \gamma^{\mu} T^{3} \psi_{L}^{i}\right)-\sin ^{2} \theta_{w}\right)_{E M}^{\mu}\right]
\end{aligned}
$$

To use this, just set $\psi=$ your favorite fermion and $T^{3}= \pm \frac{1}{2}$ for upperllover components of the original su(2) doublet. For example,

$$
\sum_{d \nless}^{d}{ }^{d} \sim=\frac{i e}{\sin \theta_{w} \cos _{\omega}}\left(-\frac{1}{2} \gamma^{m} P_{L}+\frac{1}{3} \sin ^{2} \theta_{w} \gamma^{\mu}\right)
$$

(note that we only need one factor of $P_{L}$ because it's a projector:

This way, we can use the usual Dirac spinurs for external states, etc. (If you'ce interested in 2-componat (anquare, see arXiv: 0812.1594)

Finally, we put buck in the Hiss boson. The terms proportional to $v$ were just the fermion mass terms so this is easy:

$$
\underbrace{*}_{h}=-i \frac{m_{\psi}}{v} \text { for } \psi=e, \mu, \tau, u, d, c, s, t, \sigma
$$

Combined with the gauge boson self-interaction terns (Schwartz (29.9)), we now have the tools to calculate all amplitudes in the standard Model! We will apply these tools to some specific physical processes next time.

