QCD at colliders
Add back in two more terms from the SM Lagrangian this week:

$$
\begin{aligned}
\alpha \supset & -\frac{1}{4} G_{m i}^{a} G^{m v a}+\sum_{i, j=1}^{N} \sum_{f} \bar{\psi}_{i}^{f}\left(\delta_{i j} i \gamma+g_{j} A^{a} T_{i j}^{a}-m_{f} \delta_{i j}\right) \psi_{j}^{+} \\
& -\frac{1}{4}\left(\partial_{\mu} A_{v}^{n}-\partial_{v} A_{n}^{a}+g_{j} f^{a a c} A_{m}^{b} A_{v}^{c}\right)^{2}: A_{m}^{a} \text { is re gluon field }
\end{aligned}
$$

The crucial difference between $Q E D$ and $Q C D$ is the gluon self-interaction.
This leads to interesting phenomena:

- Asymptotic freedom. At high energies, the strong force coupling gs gets weaker. This means we con borrow nay of ow results from QED and tack on some group hears factors to get the right ansur.
- At lower evessics, gluons make more gluons, and the interaction stress is lars.

Single quark

gluon splitting

jet

Instead of free quark, what we see at colliders is a spray of nearly-collimated hadrons, called a jet. The evolution from quark to jet is calculable as long as $\alpha_{s}<1$; we will do this next (lecture.

- At an energy of about $200 \mathrm{meV}, \alpha_{s} \equiv \frac{9_{s}^{2}}{4 \pi}=1$, so perturbation theory based on Feynman diagrams breaks down. Two options for calculating in a nonperturbutive field theory:
- discretize spacetime on a finite lattice and use a computer (lattice gauge theory) \leftarrow Prot. El-khadra does this
- use symmetry arguments to find a change of variables to describe some subset of the particles at low energy (chiral perturbation theory) \leftarrow we will briefly do this next week
we will cover each step of this process in time order (higher energies to lover energies)

Group theory review
First we review some group theory facts about su(3).

- Such) is 8 -dimensional: $u^{+} u=\mathbb{1}$ enforces 9 algebraic constraints on 9 complex (18 real) numbers, requiring dot $u=1$ aforcos one more. By writing $u=\mathbb{1} i x$, we find $\left(\mathbb{1}-i x^{+}\right)(\mathbb{1}+i x)=\mathbb{1} \Rightarrow x^{+}=x$ to $\theta(x)$. Similarly, deft $u=\mathbb{1} \Rightarrow \operatorname{Tr}(x)=0$ (we showed this in week 3). So Lie algebra su(3) is traceless Hermitian 3×3 matrices. Conventional to choose the generators $T^{a}=\frac{1}{2} \lambda^{a}, a=1, \ldots 8$, where λ^{a} are the Gell-Mann matrices (see Schwartz (25.17))
- The structure constants of $s u(3)$ are defined by $\left[T^{a}, T \cdot\right]=i f^{a b c} T^{c}$.
- Just like for Su(2) and SO (3,1), there are multiple representations of the group. There is a very neat mathematical generalization of the raisin,llowering operator trick to fond these representations, but we will focus on two: the fundamental 3-dimensional representation, and the adjoint 8 -dimasional rep.
- The fundamental rep is straightforward. $\left(T^{a}\right)_{i j}=\frac{1}{2} \lambda^{a}{ }_{i j}$. The generators ore 3×3 matrices, and they satisfy
$\operatorname{Tr}\left(T^{a} T^{b}\right) \equiv T_{i j}^{a} T_{j i}^{b}=\frac{1}{2} \delta^{a b}$. For Lie algebras, taking to trace acts like an inner product (for math nerds, this is known as the (Killing form). The coefficient is $T_{F} \equiv \frac{1}{2}$. We con also sum over gereators?
$\sum_{a}\left(T^{a} T^{a}\right)_{i j}=C_{F} \delta_{i j}$, where $C_{F}=\frac{N^{2}-1}{2 N}=\frac{4}{3}$ is the quadratic Casimir in the fundamental representation. Exact y analogous to $J^{2}=\sum J^{i} J^{i}=s(s+1) 1$ for spin Su(2). Quarks are vectors in the fundamental representation, and transform as $\psi_{i} \rightarrow \psi_{i}+i \alpha^{a}\left(T_{F}^{a}\right)_{i j} \psi_{j}$. Antiquarks $\left(\psi^{+}\right.$or $\left.\bar{\psi}\right)$ transform as $\bar{\psi}_{i} \rightarrow \bar{\psi}_{i}-i \alpha^{a} \bar{\psi}_{j}\left(T_{F}^{a}\right)_{j i} \quad\left(\right.$ Note: Q, u_{R}, d_{R} are all in the same representation, which is why we con use 4-componet spinous which combine u_{L} al luke)
- The adjoint rep. is a representation of the Lie algebra on itself. (This sounds weird and mysterious the first time you hear it, but it's the simplest way of stating it.)
What is a representation? $V \xrightarrow{T} V^{\prime}$, meaning a vector V get napped to a vector V^{\prime} under a lie algebra ecervent T. But this is precisely what the commutation relations do!
$T^{a} \xrightarrow{T^{b}}$ if ${ }^{a b c} T^{c}$, where the map is $\left[T^{a}, T^{b}\right]$.
Because T^{c} is a linear combination of the other generators, we must be able to write this map as an 8×8 matrix ($\left.T_{\text {adj }}^{a}\right)_{k c}$, whose entries are $\left(T_{\text {ali. }}^{a}\right)_{b c}=i f^{b a c}$. (you will do sucz) for HW.) The inner product for The adjoint is $\operatorname{Tr}\left(T_{a l s_{j}} . T_{a d j}^{b}\right)=\sum f^{a c d} f^{b c d}=N \delta^{a b}$ The quadratic Casimir is $\sum_{a}\left(T^{a} T^{a}\right)_{b c}=-\sum f^{b a d} f^{d a c}=\sum f^{b a d} f^{c a d}=N \delta^{b c}$, so $T_{A}=C_{A}=3$.
Gluons are vectors in the adjoint representation:

$$
\begin{aligned}
& A_{\mu}^{b} \rightarrow A_{\mu}^{b}+i \alpha^{a}\left(T_{a d_{j}}^{a}\right)_{b c} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{a} \\
& \Leftrightarrow A_{\mu}^{a} \rightarrow A_{\mu}^{a}-f^{a b c} \alpha^{b} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{a}
\end{aligned}
$$

with this group theron technology, we can now write down the Feynman cruces for $Q C D$:
 $\overrightarrow{\vec{p}} i=\frac{i(p+n)}{p^{2}-n^{2}} \delta^{i j} \begin{gathered}\text { (quarks just like electors with } j^{i j} \text { for color } \\ \text { in Fundamental rep.) }\end{gathered}$

So far, so sod... now comes the mess.

Even computing $99 \rightarrow 99$ requires 1000 terms! We will not do this in this class, but there is a beautiful matherretical formalism which simplifies things enormously (see schwartz Ch. 27 it yourecarions).

Asymptotic freedom
In QED, 1-loop diagrams like
vacuum polarization. Just like a dielectric escreas electric charge at long distances, virtual e^{+} / e^{-}pairs screen coupling e such that $\mu \frac{d}{d \mu} e=\frac{e^{3}}{12 \pi^{2}}$, where μ is an energy scale. The RHS is known as the beta function of QED, and because it is positive, e increases with increasing μ.

In QCD, the opposite happens. Dingran, like lead to anti-screening, such that

$$
\mu \frac{d}{d \mu} g_{S}=\frac{-g_{S}^{3}}{16 \pi^{2}}\left[\frac{11}{3} C_{A}-\frac{4}{3} n_{F} T_{F}\right] \text {. (Nobel(prize 2004!) }
$$

For SU(3) with six quark flavors, $\Lambda_{f}=6, C_{A}=3, T_{F}=\frac{1}{2}$, so $R H$ is $\frac{-9 s^{3}}{16 \pi^{2}}\left(\frac{11}{3}(3)-\frac{4}{3}\left(\frac{1}{2}\right)(6)\right)=-\frac{79 s^{3}}{16 \pi^{2}}<0$, so gs decreases as μ increases. This is known as asymptotic freedom, and is why all our approximations in the past several weeks about non-interacting quarks are valid.

For a full justification of all the properties of non-Abelian gauge theories, plus lots of subtleties I've skipped, take advanced aFT!
Here we will just investigate a few of the consequaces.
Corrections to $e^{+} e^{-} \rightarrow$ hadean

is the same as QED but with a factor of $g_{s}\left(T^{a}\right)_{i j}$ at the gluon vertex. [clarify σ_{0} is the single-fermion cross section, factor- of 3 from sum ore coles is save for $Q E D$ ad $Q \subset D$)

$$
\sigma_{e^{+} c^{-} \rightarrow \text { hadrons }}=\sigma_{0}\left(1+\frac{\alpha_{s}}{\pi}+\frac{3 \alpha}{4 \pi}+\theta\left(\alpha_{s}^{2}\right)+\theta\left(\alpha^{2}\right)\right) \quad \text { (inclusive cross section) }
$$

This gives us a way to measure $\alpha_{s}\left(Q^{2}\right)$ as a function of $Q^{2}=E_{c_{m}}{ }^{2}$.
Numerically, $\alpha_{s}(Q=100 \mathrm{CeV}) \approx 0.1$, while $\alpha(\alpha=100 \mathrm{CeV}) \approx 0.0077$, so the strong force is still strong (a teleost, stronger the $Q E D)$ even at these energies.

Note that this reaswenent is an example of an infrared and collinear safe observable. We are not requiring that there be exactly 2,3,... hadrons in the final state, since we can change this number bo emitting an arbitron number of low-enersy and small-angle gluons, the exclusive cross section for a fixed number of hadrons is an ill-defined observable.

Evan shapes for $e^{t} e^{-} \rightarrow 9 \overline{9} 9$
In a defector, a quatre jet and a gluon jet ace (to a Fist approximation) indistinguishable. So instead of considering the cressy spectrum of the gluon, we will define an observable which is insensitive to quarks vs. gluon:
Thrust $\tau \equiv \max \left\{x_{i}\right\}$ where $x_{i}=\frac{2 Q \cdot P_{i}}{Q^{2}}$ are the energy fractions of the three jets $(i=1,2,3)$. We san these variables for $e^{+} e^{-}-9 \mu^{+} r^{-r}$: they are identical here, with $x_{1}+x_{2}+x_{3}=2$.

