The Higgs mechanism in the Standard Model
Let's now return to the last terms in the Standard Model
Lagrangian we haven't studied yeti

$$
\mathcal{L})-\frac{1}{4} W_{\mu v}^{a} w^{\mu v a}-\frac{1}{4} B_{m v} B^{\mu v}+\left(D_{\mu} H\right)^{+}\left(D_{m} H\right)+m^{2} H^{+} H-\lambda\left(H^{+} H\right)^{2}
$$

As with the Abelian case, the wrong-sign mass term will lead to spontaneous symmetry breaking. First let's minimize the potential:

$$
V(H)=-m^{2} H^{+} H+\lambda\left(H^{+} H\right)^{2}
$$

$\frac{\partial V}{\partial H^{+}}=-m^{2} H+2 \lambda H\left(H^{+} H\right)=0=>H^{+} H=\frac{m^{2}}{2 \lambda}$. Note that this condition only determines the norm of $H,|H|^{2} \equiv H_{1}^{3} H_{1}+H_{2}^{\Delta} H_{2}$. Since Su(2) gauge transformations rotate $H_{1} \leftrightarrow H_{2}$, we can choose a gauge were $H_{1}=0$.

$$
\text { Write } H=\exp \left(2 ; \frac{\pi^{a}(x) \tau^{a}}{v}\right)\binom{0}{\frac{v}{\sqrt{2}}+\frac{h(x)}{\sqrt{2}}} w / r=\frac{m}{\sqrt{\lambda}}, \tau^{a}=\frac{1}{2} \sigma^{a} \text { (such) geventos) }
$$

(The $\frac{1}{\sqrt{2}}$ is there so $D_{\mu} H^{+} D^{\mu} H$ contains $\frac{1}{2} \partial_{\mu} h \partial^{\sim} h$, as appropriate for a real scalar h.) Use witary gauge to set $\pi(x)=0$ everywhere.
Covariant derivative is $D_{\mu} H=\partial_{\mu} H-i g W_{\Gamma}^{a} t^{a} H-\frac{1}{2} i g^{\prime} B_{\mu} H$

$$
\text { Sun }(2)_{2} \text { gauge }
$$ coupling,

First, let's look only at the terms without h (i.e, sect $h=0$ for now) $H \rightarrow \frac{v}{\sqrt{2}}\binom{0}{1}$. Since B is Abelim, ceurite non-derivative term as

$$
\begin{aligned}
& -i g\left(w_{\mu}^{a} \tau^{a}+\frac{1}{2} \frac{g^{\prime}}{g} B_{\mu} \mathbb{1}\right)=-\frac{i g}{2}(\underbrace{w_{\mu}^{a} \sigma^{a}+\frac{g^{\prime}}{g} B_{\mu} \mathbb{1}}_{\text {Hermitian }}) \\
\Rightarrow & \left|D_{\mu} H\right|^{2}=g^{2} \frac{v^{2}}{8}\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{g^{\prime}}{g} B_{\mu}+w_{\mu}^{3} & w_{\mu}^{\prime}-i w_{\mu}^{2} \\
w_{\mu}^{\prime}+i w_{\mu}^{2} & \frac{g^{\prime} B_{\mu}-w_{\mu}^{3}}{g^{2}}
\end{array}\right)^{0}\binom{0}{1}
\end{aligned}
$$

\Rightarrow the three gauge bosons which become massive are $W_{\mu}^{\prime}, w_{\mu}^{2}$, and $\frac{g^{\prime}}{g} B_{\mu}-w_{\mu}^{3}$.
However, QFT tells us we need to preserve the normalization of the gauge kinetic terms, so we should perform a rotation of the fields B_{n} and W_{m}^{3} to define the Mass eigenstate. Specifically.

$$
\begin{aligned}
& \binom{2_{\mu}}{A_{\mu}}=\left(\begin{array}{cc}
\cos \theta_{w} & -\sin \theta_{w} \\
\sin \theta_{\omega} & \cos \theta_{w}
\end{array}\right)\binom{w_{\mu}^{3}}{B_{\mu}} \text {, with } \tan \theta_{w}=\frac{9^{\prime}}{9} \text { (weinberg angle). Then } \\
& -\frac{1}{4} W_{\mu v}^{3} w^{3 \mu v}-\frac{1}{4} B_{\mu} B^{\mu v} \longrightarrow-\frac{1}{4} Z_{\mu} 2^{\mu v}-\frac{1}{4} F_{\mu v} F^{\sim v} \text { since rotations } \\
& \partial_{\mu} z_{v}-\partial_{v} z_{\mu} \quad \partial_{\mu} A_{v}-\partial_{v} A_{\mu}
\end{aligned}
$$

preserve norm. A so, $\frac{g^{\prime}}{g} B_{\mu}-w_{\mu}^{3}=\tan \theta_{n} B_{\mu}-w_{\mu}^{3}=-\frac{1}{\cos \theta_{\omega}}\left(w_{m}^{3} \cos \theta_{n}-B_{m} \sin \theta_{v}\right)=\frac{Z_{\mu}}{\cos \theta_{\omega}}$
\Rightarrow we identify Z_{μ} with the Z boson and A_{μ} with the photon, and Their Lagrangian is $\alpha \supset-\frac{1}{4} F_{\mu v} F^{\sim v}-\frac{1}{4} Z_{\mu v} 2^{v v}+\frac{1}{2} n_{2}^{2} z_{\mu} z^{n}$, with $m_{z}=\frac{1}{2 \cos \theta_{w}}$ gr. Photon remains massless! We can experss this as $S_{L} U(2)_{L} \times U(1)_{y} \rightarrow U(1)_{E M}$; the electroweak symmetry is spontmearsy broken to elecformanome. What about electric charge? We want to find the part of the gauge kiretic term that couples to the photon, which is a linear combination of W_{μ}^{3} and B_{m}. We have previously identified $\tau^{3}+y$ as the electric charge, so let's find its coefficient.

$$
\begin{aligned}
D_{M} & =\partial_{\mu}-i g W_{m}^{a} \tau^{a}-i g^{\prime} V B_{\mu} \\
& =\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(W_{\mu}^{+} \tau^{+}+W_{\mu}^{-} \tau^{-}\right)-i \frac{1}{\sqrt{g^{2}+g^{\prime 2}}} Z_{\mu}\left(g^{2} \tau^{3}-g^{2} y\right)-i \frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}} A_{\mu}\left(\tau^{3}+y\right)
\end{aligned}
$$

where $W^{ \pm}=\frac{1}{\sqrt{2}}\left(W^{\prime} \mp i W^{2}\right)$ and $\tau^{ \pm}=\frac{1}{\sqrt{2}}\left(\tau^{\prime} \pm i \tau^{2}\right)$

From the coefficient of $\tau^{3}+y$, we can extract the electric change:

$$
e=\frac{g g^{\prime}}{\sqrt{g^{2}-g^{\prime 2}}}=g \sin \theta_{n}=g^{\prime} \cos \theta_{w}
$$

Finally, we can treat $W_{m}^{ \pm}$as a complex vector field, with mass term $n_{w}^{2} W_{m}^{+} w^{-}$, where $m_{w}=\frac{9 v}{2}$
The notation $W^{ \pm}$is appropriate, since $W^{ \pm}$have electric charges ± 1 : Let $\left(\tau^{3}+y\right)$ act on $W_{\mu}^{ \pm} \equiv W_{\mu}^{ \pm} \tau^{ \pm}$. Y acts as O since $S u(2)$ and $u(1)_{y}$ commute. W is in the adjoint of Suez), so τ acts as a commatator:
$\left[\tau^{3}, \tau^{ \pm}\right]= \pm \tau^{ \pm}$(recall raising and lowering operators from an!)
So $W^{ \pm}$have electric charge ± 1. By similar reasoning, 2 is rectal.
Predictions of the Hings mechanism:

- The standard Model contains a massless photon, a neutral massive gauge boson 2, and a charged massive gauge boson W. Their masses are related as $m_{z}=\frac{m_{w}}{\cos \theta_{w}}$, so w is lighter than the 2.
- Electric charge is related to the gage couplings gand g^{\prime} as $l=g \sin \theta_{n}$.
- Four parameters in the Lagrangian $9,9^{\prime}, m$, and λ fou physical parameters c, θ_{w}, m_{w}, and $m_{h}=\sqrt{2} n$. Unfortunately, m_{n} independent from other three! Can't predict the H:yys mass.
- Starlard Model fields couple to $W^{ \pm}$are 2 through covariant derivative

$$
D_{\mu}=\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(w_{\mu}^{+} \tau^{+}+w_{\mu}^{-} \tau^{-}\right)-\frac{i g}{\cos \theta_{\omega}} Z_{\mu} Q_{2}-i e A_{\mu} Q \text { where }
$$

$Q_{2} \equiv \tau^{3}-\sin ^{2} \theta_{w} Q$ is the "chare" whee the 2-6050n. Different for Rad feces!!

Putting the Higgs buck in
Why do we need the Highs boson in the first place? Even if we knew nothing about the Yukaua terns and the underlying gauge invariance, the existence of a massive rector boson with self-interactions is pathological without the Hisgs.
To see this, consider the process $W_{L}^{+} Z_{L} \rightarrow W_{L}^{+} Z_{L}$, where the subscript L means longitudinally polarized. This process only exists for massive (since massless vectors are transverse), nonabelian (since abelian vectors have no se(f-interactions) vectors.

The component of the 2 which interacts with the W is W^{3}, so this is very mach like gluon-gluon interactions with some such) group theory factor instead of suck). (see schwartz sec. 29.1 for the full set of Feynman rules.) First let's carefully define polarization vectors: recall $\epsilon_{L}^{\mu}=\frac{1}{m}\left(p_{2}, 0,0, E\right)$ for $p^{\mu}=\left(E, 0,0, p_{2}\right)$. For geneal p^{μ} :

$$
\epsilon_{1}^{\mu}=\frac{1}{m_{w}} p_{1}^{\mu}+\frac{2 m_{w}}{t-2 m_{n}^{2}} p_{3}^{\mu} \quad \epsilon_{2}^{\mu}=\frac{1}{m_{2}} p_{2}^{\mu}+\frac{2 m_{2}}{t-2 m_{2}^{2}} p_{4}^{\mu}
$$

(similarly for $\epsilon_{2}, \epsilon_{4}$, with $\left.t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}\right)$
These satisfy $\epsilon_{i} \cdot p_{i}=0$, not normalized but want matte for argument to for om.
First matrix elemati.

$$
\begin{aligned}
& i \mu_{s}= \\
& \left(i e \cot \theta_{w}\right)^{2} \epsilon_{1}^{\mu} \epsilon_{2}^{v} \epsilon_{3}^{\alpha} \epsilon_{4}^{p \beta} \frac{i}{s-m_{w}^{2}}\left(-\eta^{\lambda k}+\frac{1}{m_{N}^{2}} k^{\lambda} k^{k}\right) \times \\
& \quad\left[-\eta^{n v}\left(p_{2}-p_{1}\right)^{\lambda+}+\eta^{v \lambda}\left(p_{2}+k\right)^{\mu}-\eta^{\lambda n}\left(k+p_{1}\right)^{v}\right]\left[-\eta^{\alpha \theta}\left(p_{4}-p_{3}\right)^{n}+\eta^{p n}\left(p_{4}+k\right)^{\alpha}-\eta^{n \alpha}\left(k+p_{3}\right)^{0}\right] \\
& w / k \equiv p_{1}+p_{2}=p_{3}+p_{4} .
\end{aligned}
$$

Plugging in polarization vectors (since we have fixed our initial spin states). 9

$$
M_{s}=\frac{e^{2} \cot ^{1} \theta_{n}}{4 m_{n}{ }^{-} m_{2}{ }^{2}}\left[2 s u+s^{2}-2 m_{w}{ }^{2} \frac{3 s u+u^{2}}{s+u}+2 m_{2}{ }^{2} \frac{s^{2}-3 s u-2 u^{2}}{s+u}-\frac{m_{2}^{4}}{m_{u}{ }^{2}} s+\theta(1)\right]
$$

This looks like a problem: at large enough 5, amplitude grows without bound, eventually we will violate unitarit.
To understand this behavior, look at $E \supset m_{w}$, where $\epsilon_{L}^{\mu}=\frac{1}{m} p^{\mu}$

$$
M \sim(\text { propagator }) \times(\text { polarization })^{4} \sim E^{4} \sim s^{2}
$$

$$
\sim \frac{\frac{E^{2}}{m_{w}^{2}}-1}{s-m_{\omega}^{2}} \quad\left(\frac{E}{m_{w}}\right)^{4}
$$

$$
\sim \frac{1}{m_{w}^{2}}
$$

Things are actually not as bad as they seem. (A1+w)

$$
\begin{aligned}
& M_{u}=\frac{e^{2} \cot ^{2} \theta_{u}}{4 m_{w}{ }^{2} m_{2}^{2}}\left[2 s u+u^{2}-2 m_{u}{ }^{2} \frac{3 s u+s^{2}}{s+u}+2 m_{2}^{2} \frac{u^{2}-3 s u-2 s^{2}}{s+u}-\frac{m_{2}^{4}}{m_{n}{ }^{2}} u+\theta(1)\right] \\
& M_{4}=\frac{e^{2} \cot ^{2} \theta_{u}}{4 m_{w}{ }^{2} m_{2}{ }^{2}}\left[-s^{2}-4 s u-u^{2}+2\left(m_{w}{ }^{2}+m_{2}{ }^{2}\right) \frac{s^{2}+6 s u+u^{2}}{s+u}+\theta(1)\right]
\end{aligned}
$$

So there is a partial cancellation (much like the Abelion case, where 3 - and 4-point couplings are related):

$$
M_{\text {rot }}=-\frac{m_{2}^{2}}{4 m_{w}^{2}} e^{2} \cot ^{2} \theta_{w}(s+u)+\theta(1)=\frac{t}{v^{2}}+\theta(1)
$$

But this still grows with enemas!! Specifically, using partiul-ware unitarity (Schwartz 24.1.5), we must have $\frac{E^{2}}{v^{2}} \times \frac{1}{32 \pi}<1$ $\Rightarrow E<\sqrt{32 \pi} V \approx 2.5$ TeN. Therefore, some new physics must appear at this energy scale to restore witarit.

In the Stadad Model, the Hings rescues unitarity. (Before 2012 we did not know this to be true!). Highs interactions are simple to determine: just take $v \rightarrow v+h$

$$
\begin{aligned}
\Rightarrow m_{w}^{2} w_{m}^{+} w^{-r}=\frac{v^{2} g^{2}}{4} w_{r}+w^{--} \longrightarrow & \frac{(v+h)^{2} g^{2}}{4} w_{r}^{+} w^{-}- \\
= & \frac{2 h}{v} \frac{v^{2} g^{2}}{4} w_{m}^{+} w^{-}-+\ldots \\
= & 2 \frac{h}{v} m_{w}^{2} w_{r}^{+} w^{-1}+\ldots \\
& \text { (same for } 2 \text {) }
\end{aligned}
$$

Importatel, this implies 1tisgs couples proportional to mass! (will see this more next week). Here, we have an additional diagram

$$
\begin{aligned}
M_{h} & =-\frac{e^{2}}{4 m_{2}^{2} \sin ^{2} \theta_{n} \cos ^{2} \theta_{n}} \frac{t^{2}\left(t-4 m_{n}^{2}\right)\left(t-4 m_{2}^{2}\right)}{\left(t-m_{h}^{2}\right)\left(t-2 m_{n}^{2}\right)\left(t-2 m_{2}^{2}\right)} \\
& =-\frac{t}{v^{2}}+\theta(1)
\end{aligned}
$$

Exactly cancels the part of the amplitude which grows with ereay!
The Highs is the lust piece of the puzzle in the Standard Model which ensures its validity as a quantum field theory up to the Planck scale of $\sim 10^{19} \mathrm{GeV}$. (of course, this doesn't mean ter Can't be no physics at higher energies than I Ter, just that there doesn't have to be.) To Summarize:

- we stated with a complex scalar doublet H, with $2 \times 2=4$ real Scalar degrees of freedom. 3 were "eaten" by the W^{I} and z, le aving one physical massive scalar h, one mass cess boson A, and three massive bosons,
- Higns intenctions determined by $v \rightarrow r$ th in Lagrangian; we will do this for Yukama terms next week.

