Intro to group theory and So(3,1)

Observations (many!) tell us physics is invariant with respect to Lorentz transformations. Therefore, our goal is to describe elementary particles in a Lorentz-invariant way.

Over the next 3 weeks we will lear what all these words mean.

in general

(lain', Lorentz transformations form a grap, which we call
$$\left\lfloor \frac{1}{2} \\ SO(3,1) \right\rfloor$$

Two ways to see this:
1) explicit calculation (compose two boosts and see you can get another boost, etc.) - you will see an example in Hlv
2) be more abstract and cleare
Define $SO(3,1) = S$ the set of 4×4 real matrices M
Satisfying $\left[\frac{M}{7} \frac{M}{7} \frac{M}{1} = \frac{4}{1} \right]$, with $\gamma = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$ and $\frac{1}{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
Check this makes kase, boost alog x-axis is
 $M_{Y}^{(n)} = \begin{pmatrix} Y & YO & 0 & 0 \\ YO & Y & 0 & 0 \\ O & 0 & 1 \\ O & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $M_{Y}^{(n)} T = \begin{pmatrix} Y & YO & 0 & 0 \\ YO & Y & 0 & 0 \\ O & 0 & 1 & 0 \\ O & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\eta M^{T} = \begin{pmatrix} Y & YO & 0 & 0 \\ YO & Y & 0 & 0 \\ O & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \eta M$
 $\eta M^{T} \eta M = \begin{pmatrix} Y^{T} - Y^{T} \\ Y^{T} Y^{T} \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ Since
 $Y^{T}(1 \wedge N) = \frac{1}{1 - n^{-1}}(1 \wedge N) = 1$
1. Milty.' $M = M = \gamma \eta M \eta M = \eta I \eta I = \Lambda$ since $\eta^{T} = I$
1. Inders, if M is in the proop, $\eta M^{T} \eta M = \frac{1}{2} \eta M^{-1} T \eta$

Left - Multiply by
$$M_{r}$$
 right-multiply by M^{-1} ;
 $M \parallel M^{-1} = M(M^{-1} \eta (M^{-1})^{T} \eta) M^{-1}$
 $= \Pi = \eta (M^{-1})^{T} \eta M^{-1}$ So M^{-1} is in $SO(3,1)$
Closure: HW

These 4x4 matrices are also a representation of the group: since they nere used to define the group, we call it the defining representation. It acts on 4-vectors x' as M' x' What about other representations?

- Trivial representation. All elements of SO(3,1) map to Ne number 1. This is the "do-nothing" representation and acts on scalars (numbers)
- What about acting a two-component vectors? 3 component? To do this systematically, we need the concept of Lie algebras. These are another mathematical collection of objects obtained from a goup by looking at gray elements infinitesimally close to the identity.

Let's try writing
$$M = 1 + EX$$
 and expand to First order in E .

$$1 = \eta (1 + EX)^T \eta (1 + EX) = \eta^T + E [\eta X^T \eta + \eta^T X] + \theta(E^2)$$

$$1$$

$$= N X^T \eta = -X$$
defines Lie algebra $2\sigma(3,1)$
Dimension: Casiest to compare to $X^T = -X$, which means a dissonce tric q

$$\binom{0 \times X \times X}{0 \times X} K = \frac{1}{0} K = \frac{1}{0} K$$

1

×4

Unlike
$$SO(3,1)$$
, $SO(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $X, Y \in 2O(3,1)$, then
 $a X + 6 Y \in 2O(3,1)$ for any real numbers a, b .
It has one additional ingredient:
 $i F X, Y \in 2O(3,1)$, then $[X, Y] = X Y - YX \in EO(3,1)$
 $Prob F: q(XY - YX)^T q = q(Y^T X^T - X^T Y^T) q$
 $= q Y^T q q X^T q - q X^T q Y^T q$
 $= (-Y)(-X) - (-X)(-Y)$
 $= -(XY - YX) \sqrt{2}$

$$\begin{array}{l} F_{\text{Ex.}} & K_{\text{x}} = \frac{1}{1} \begin{pmatrix} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} & (HW) \\ \begin{array}{c} 6005t & 0^{1} + 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \begin{array}{c} 6005t & 0^{1} + 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \end{array}$$

The fact that J and K get mixed with each other is anaying.
But we have one more trick up our sleeve, define a new basis

$$\overline{A} = \overline{J + iR}$$
, $\overline{B} = \overline{J - iR}$
In this basis, the commutation relations are (check for yourse(F))
[Ai, A; J::Gize Az, [Bi, B; J::Gize Bz, [Ai, B,]: 0
two identical copies of the same
Lie algebra which don't mix?
So representation theory of do(3,1) boils down to representation theory
of A and B.
But you already from the answer from quantum mechanics?
2 d rep? A: = or; faulti matrices (spin - 1)
:
Using raising and lowering operators, can have any halt-integer
Spin representation of dimension $J + 1$
= Pick a halt-integer j, and another halt-integer of L and R .
 J_{00} have defined a rep. (j_1, j_2) of the lorentz grap with
dirension $(2j_1+1)(2j_2+1)$. jn
 U_{1} U_{1} U_{1} T_{1} T_{1} T_{1} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} $T_{$

/5____

Representations of the Poincaré group

The world has more symmetries than just Lorentz transformations. translations in space and time. These translations form a group too; \mathbb{R}^4 , since we can write $x^m \rightarrow x^n + \lambda^n$ as a A-vector.

Combine translations with rotations and boosts? Have to be a bit careful because translations and rotations don't commute. Correct structure is a semi-direct product: if α and β are translations, and f, g are harents transformations, $(x, f) \cdot (\beta, g) \equiv (x + f \cdot \beta, f \cdot g)$ $\int_{\alpha} \int_{\beta} \int_$

X + F.B is also a A-vector, so it can describe a traslation => (Lis is a group, IR * X SO(3,1)

At this point it's north reviewing some convenient notation for Lorentz transformations. In the defining representation, a Lorentz transformation Λ is a 4x4 matrix Λ^{*}_{ν} Covariant vectors V_{μ} transform by matrix multiplication: $V_{\mu} \xrightarrow{\sim} \Lambda^{*}_{\mu} V_{\nu}$ ($\equiv \Lambda \cdot V$, contract top matrix index) Contravariant vectors transform with the transpose of Λ : $W^{\mu} \xrightarrow{\sim} \Lambda^{*}_{\nu} W^{\nu}$ ($\equiv W \cdot \Lambda^{T}$, contract bottom matrix index)

Lorate trasformations preserve the dot product under
$$q$$
:
 $V_{\mu} W^{\pi} \equiv q_{\mu\nu} V^{\mu} W^{\nu} \equiv WqV = VqW$
Perform Lorentz trasformation Λ' :
 $WqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv Wq^{-1}V \equiv WqV$
 $MqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv Wq^{-1}V \equiv WqV$
 $MqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv Wq^{-1}V \equiv WqV$
 $MqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv Wq^{-1}V \equiv WqV$
 $MqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv Mq^{-1}V \equiv MqV$
 $MqV \rightarrow (W\Lambda^{T}) q(\Lambda V) \equiv W(\Lambda^{T}q\Lambda)V \equiv q^{-1}V_{0}, and$
this may we never need to write explicit factors of q or
 $Keep track of trasposes.$
 $Trasposes and interes or culched by defining equation:
 $\eta^{\Lambda^{T}}\eta^{\Lambda^{T}} \equiv \Lambda^{-1} \equiv \eta^{\Lambda^{T}} q = (\Lambda^{-1})^{-1} = q_{\mu\nu}\eta^{\Lambda}\Lambda^{\Lambda}s \equiv \Lambda^{T}_{0}$. (HW)
so boit need to VMP track of inverse eiter.
There have more than one index: each lower index trasforms
with a factor of Λ , each upper index w/Λ^{T}
 $e.p. T_{\mu\nu} \rightarrow \Lambda_{\mu}^{*} \Lambda_{\nu}^{*} T_{\mu,0}$
or $\eta^{-\nu} \rightarrow \Lambda_{\mu}^{*} \Lambda_{\nu}^{*} T_{\mu,0}$
 $T_{\mu\nu} = \Lambda^{-1} e \Lambda^{0} q^{\mu\nu}$ ($= q^{-1}$) to q^{-1} is invariant under locate taxions)$
 $Metri order doesn't
 $Metri order doesn't
Lorentz-invariant quo titles have indices fully contracted:
 $We know V^{*}V_{\mu}$ or $T_{\mu\nu}T^{-1}$ does not change under a
Lorentz transformation just by looking at it.
 $Just$ to check: $V^{*}V_{\mu} \rightarrow \Lambda^{*}V^{*}V_{\mu}$
 $= V^{*}V_{\mu}$$$