Intro to group theory and So $(3,1)$
Observations (mary!) tell us physics is invariant win respect to Lorentz transformations. Therefore, ow goal is to describe elementary particles in a Lorentz-invoriant way.

An elementary particle is an irreducible represutation of The Poincare group - a semidicet product of the Lorentz group and the group of spacetime translations classified by its two Casimir inveriants, mass and spin. If the particle is charged, it is an irreducible representation of an additional internal symmetry, global or gauged

Over the next 3 week, we will learn what all these no rds mean.

Groups, a collection of objects with on a ssoluative multiplication race satisting
a) idutity; $I M=M I=M$ for any $M \in G$ and some specific $I \in G$
6) incuse: for any $M \in G$, there exists M^{-1} in 6 such that $M M^{-1}=I$
c) closure: if $M, M^{\prime} \in G$, then $M M^{\prime} \in G$

Notice multiplication is not necessarily commutative: MN $=\mathrm{NM}$ in geneal

Representation: a map $G \rightarrow M_{a t_{n \times n}}$. Elements of $G \mathrm{can}$ then act on vectors in the vector space \mathbb{R}^{n} by matrix multiplication

Claim: Lorentz transtometions form a group, which we call So $(3,1)$

Two mas to see this:

1) explicit calculation (compose fur boosts and see you can get another boost, etc.) - you will see an example in HW
2) be more abstract all clever

Define $S O(3,1)$ as the set of 4×4 real matrices M Satisfying $\eta M^{\top} \eta M=\mathbb{1}$, with $\eta=\left(\begin{array}{lll}1 & & \\ -1 & & \\ & -1 & \\ & & -1\end{array}\right)$ and $\mathbb{1}=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & 1\end{array}\right)$
Check this makes sense." boostalang x-axis is

$$
\begin{aligned}
& M_{r}^{(r)}=\left(\begin{array}{cccc}
r & r \beta & 0 & 0 \\
r A & r & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), M_{r}^{(x)} T=\left(\begin{array}{llll}
r & r \beta & 0 & 0 \\
r n & r & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \eta M^{\top}=\left(\begin{array}{cccc}
v & v n & 0 & 0 \\
-v n & -v & 0 & 0 \\
0 & 0 & -1 & 0 \\
v & 0 & 0 & -1
\end{array}\right)=\eta M \\
& \text { Yo } M^{\top} \eta M=\left(\begin{array}{llll}
r^{2}-r^{2} \beta^{2} & & & \\
& r^{2}-r^{2} \rho^{2} & & \\
& & & \\
& & & \\
& & & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right) \text { since } \\
& V^{2}\left(1-\beta^{2}\right)=\frac{1}{1-\beta^{2}}\left(1-\beta^{2}\right)=1
\end{aligned}
$$

isatin: $M=\mathbb{1} \Rightarrow \eta m^{+} \eta M=\eta \mathbb{I} \eta \mathbb{1}=\mathbb{1} \quad \sin c e \eta^{2}=\mathbb{1}$
inverse: if M is in the group, $\eta M^{\top} \eta M=\mathbb{1}$, tare inverse:

$$
\mathbb{1}=\left(\eta M^{\top} \eta M\right)^{-1}=M^{-1} \eta^{-1}\left(m^{\tau}\right)^{-1} \eta^{-1}=\eta^{-1} \eta\left(m^{-1}\right)^{\top} \eta
$$

Lift - multiph by M, rightemultipls by m^{-1} :

$$
\begin{aligned}
\underbrace{M \mathbb{I} M^{-1}}_{=\mathbb{I}} & =M\left(M^{-1} \eta\left(M^{-1}\right)^{\top} \eta\right) M^{-1} \\
& =\eta\left(m^{-1}\right)^{\top} \eta M^{-1} \text { So } M^{-1} \text { is in } S 0(3,1)
\end{aligned}
$$

Closure: HW

These 4×4 matrices are also a representation of the group: Since they were used to define the group, we call it in e defining representation. It acts on 4 -vectors x^{v} as $\eta_{v}^{\mu} x^{v}$ What about other representations?

- Trivial representation: All elements of So 3,1) map to re number 1. This is be "do-nothing" representation and acts on scalar (numbers)
- What about acting an two-comporent vectors? 3-omponet?

To do this systematically, we reed the concept of Lie algebras. These are another mathematical collection of objects obtained from a group by looking at gray elements infinitesimally close to the identity.

Letha try writing $M=1+\in X$ and expand to first ode in t.

$$
\mathbb{1}=\eta(\mathbb{1}+\epsilon x)^{\top} \eta(\mathbb{1}+\epsilon x)=\eta_{\mathbb{1}}^{\eta^{2}}+\epsilon\left[\eta x^{\top} \eta+\eta^{2} x\right]+\theta\left(\epsilon^{2}\right)
$$

$\Rightarrow \eta x^{\top} \eta=-x$ defines Lie algebra $20(3,1)$
Dimension easiest to compare to $x^{\top}=-x$, which rears atisuractric 4×4 :

$$
\left(\begin{array}{cc}
x_{x}^{x} x \\
0 & x \\
0 & x \\
0
\end{array}\right)<6 \text { prancers }
$$

Unlike $S O(3,1)$, $s o(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $x, y \in s o(3,1)$, then $a x+b y \in s o(3,1)$ for any real numbers a, b.
It has one additional ingredient:

$$
\text { if } x, y \in \operatorname{so}(3,1) \text {, then }[x, y] \equiv x y-y x \in \operatorname{do}(3,1)
$$

Prob: $\quad \eta(x y-y x)^{\top} \eta=\eta\left(y^{\top} x^{\top}-x^{\top} y^{\top}\right) \eta$

$$
\begin{aligned}
& =\eta y^{\top} \eta \eta x^{\top} \eta-\eta x^{\top} \eta \eta y^{\top} \eta \\
& =(-y)(-x)-(-x)(-y) \\
& =-(x y-y x)
\end{aligned}
$$

Since taking brackets keeps us in the Lie algebra, we con choose a basis T^{i} and wite $\left[T^{i}, T^{j}\right]=f^{i j k} T^{k}$, wee e fijk are called structure constants, and the whole equation is a commutation relation.

For so (3,1), it's easiest to split he burris into infinitesimal boosts and infinitesimal rotations, and to allow ourselves complex coefficients
Let $\vec{J} \equiv\left(J_{x}, J_{y}, J_{z}\right)$ be infinitesimal rotations around x, y, ad z axes respectively. $E_{x}, J_{x}=i\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right) \quad(H W)$
$\vec{K} \equiv\left(k_{x}, k_{y}, k_{z}\right)$ are infinikrimal boosts aby $x, y, 2$

$$
E_{x} \cdot K_{x}=i\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad(H w)
$$

Commutation relations: $\left.\underset{l}{\left[J_{i}, J_{k}\right]}=i \epsilon_{i j k} J_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k}\right)_{k},\left(J_{i}, k_{j}\right)=i \epsilon_{i j k} K_{k}$ look familiar? two boosts give a rotartiba, HW

The fact that J and K get mixed with each other is annoying. But un have one more trick up ow sleeve: defame a new basis

$$
\vec{A}=\frac{\vec{J}+i \vec{k}}{2}, \quad \vec{B}=\frac{\vec{J}-i \vec{k}}{2}
$$

In this busisis the commutation relations are (check for yourself!)

$$
\left[A_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}, \quad\left[B_{i}, B_{j}\right]=i \epsilon_{i j k} B_{k}, \quad\left[A_{i}, B_{j}\right]=0
$$

two identical copies of the same
Lie algebra which don't mix.'
So representation theory of so $(3,1)$ boils down to representation theory of A and B.

But you already know the conquer from quantum mechanics?
Id rep: $A_{i} \equiv \sigma_{i}$, Pauli matrices (spin $\left.-\frac{1}{2}\right)$
Id rep: $A_{i} \equiv$ infinitesimal $3 d$ rotations (api n-1)
using raising and lowering operators, can have any half-integcer spin representation of dimension $2 j+1$
\Rightarrow Pick a half-intege j_{1}, and mother half-integer \dot{u}_{2}, and You have defined a rep. $\left(j_{1}, j_{2}\right)$ of the Lorentz group with dimension $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$. j_{2}

Representations of the Poincare group
The world has more symmetries than just Lorentz transformations": translations in space ad time. These translations form a group too: \mathbb{R}^{μ}, since we can write $x^{\mu} \rightarrow x^{\mu}+\lambda^{\mu}$ as a 4 -vector.

Combine translations with rotations and boosts? Have to be a bit careful because translation and rotations doit commute. Correct structure is a semi-direct product: if α ad β are translations, and f, g are lorentz tronstornctions,

$$
\begin{aligned}
& (\alpha, f) \cdot(\beta, g) \equiv(\alpha+f \cdot \beta, f \cdot g) \\
& \prod_{\text {ph Loenta }} \overbrace{\text { usual multiplication }} \\
& \text { trust. \& to law tran last lecture } \\
& \text { trantation para. } \\
& B \text {, then traslote } \\
& \text { b) } \alpha \\
& \alpha+f \cdot \beta \text { is also a 4-rector, so it can describe a translation } \\
& \Rightarrow \text { this is a group, } \mathbb{R}^{4} \times S O(3,1)
\end{aligned}
$$

At this point it's worth reviewing some convenient notation for Lorentz transformations. In the defining repesectation, a Loretz transformation Λ is a 4×4 matrix Λ^{n} 。 Covariant vectors V_{μ} transom by matrix multiplication:

$$
V_{\mu} \xrightarrow{\wedge} \Lambda_{\mu}^{v} V_{v} \quad(\equiv \Lambda \cdot v, \text { contact top matrix index })
$$

Contravariant vectors transform with the transpose of Λ :

$$
W^{\mu} \xrightarrow{n} \Lambda^{\mu}{ }_{v} W^{\nu} \quad\left(\equiv W \cdot \Lambda^{\top}\right. \text {, contract bottom matrix index) }
$$

Lorentz trastornctions preserve the dot product under 7:

$$
V_{\mu} w^{\mu} \equiv \eta_{\mu \nu} V^{\mu} w^{V} \equiv W \eta V=V \eta W
$$

perform lorentz trastomation Λ :

$$
W \eta V \rightarrow\left(W \Lambda^{\top}\right) \eta(\Lambda V)=W\left(\Lambda^{T} \eta \Lambda\right) V=W=W \eta_{\text {deration of } 50(\xi, 1)}^{W} V=W \eta V
$$

with Einstein notation, raise ad lower indices with η : Car convert covariant \rightarrow contravariant by $V^{\mu}=\eta^{\mu v} v_{v}$, and this way we never seed to write explicit factors of η or keel track of transposes.
Transposes and inverses are related b_{y} defining equation: $\eta \Lambda^{\top} \eta \Lambda=\mathbb{1} \Rightarrow \Lambda^{-1}=\eta \Lambda^{\top} \eta \quad$ or $\left(\Lambda^{-1}\right)^{\mu}{ }_{v}=\eta_{\alpha v} \eta^{\beta n} \Lambda^{\alpha} \beta \equiv \Lambda_{v}^{\mu}$, (HL) So doit need to kep track of inverses either.
Tensors have more than one index: each lower index transforms with a factor of Λ, each upper index w / Λ^{\top}
e. . $\quad T_{\mu \nu} \rightarrow \Lambda_{\mu}^{\alpha} \Lambda_{v}^{\beta} T_{\alpha \beta}$
 note: order docent
matter wen me wite indies explicify
Lorentz-inumiat quantifies have indices fully contracted: we know $V^{\mu} V_{\mu}$ or $T_{\mu v} T^{\mu v}$ doe, not change under a Lorentz transformation just by looking at it.

Just to check: $V^{\mu} V_{\mu} \rightarrow \Lambda^{\mu}{ }_{V} V^{v} \Lambda_{\mu}^{\rho} V_{\rho}$

$$
\begin{aligned}
& =\left(\Lambda^{-1}\right)^{\mu} \Lambda^{\prime} \Lambda_{\mu}^{\rho} V^{v} V_{\rho} \\
& =\delta_{v} V^{v} V_{\rho} \\
& =V^{v} V_{v} \quad
\end{aligned}
$$

