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We have now shown that W
"

is a Casimir great - for ↳

the Poincare group . It  is Lorentz - invariant
, so for a massive

particle ,
we can evaluate in  a Frane wk - e pm -

- ( n
,

o
,

o
,

o )

So w
-

= - n

- J . J

Recall From be First lecture that A=Jt ,
B=J-

2

⇒ J -

- AIB

Reps of Lorentz group are labeled by half - integer spins
ji

, in , so this is like adding spins in Qm
'

.
J can hare

spins j -

- Ij
,

- in
,

b- rid t I
,

.
.  - jitsu

,
with J

"

= jljtl )

But W
"

is a Casimir operate - so  it only takes oz value ;
Which One ?

So
uses : ( o

, o ) rep . has j ,=jn= O so j
-

- O : these are

sp particles .

( I , o ) or ( o
,

t ) reps . have j ,
= I and Ju -

- O o - vice-versa ! again
,

Only one possible rate of j
,

j -

- In , so these are sp des

More interesting :
-

( he ,

'

z ) rep . has j ,
-

- Jr -

- I , so j
 

= to o
.

In GET
,

this will

describe spit particles ,
but we will need an  additional constraint

in the equations of motion to project out the j=o component .

What about massless particles? P ! O
,

so we can 't
go to a Frane

where pin -

- In
,

o
,

o
,

ol
.

The best we can do is to take

pm -

- ( k
, 0,0 ,

k )
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In this Frane
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so Wo po - wtf?. Wfp'

. Wp '
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Wo po -

- W
'

p
)
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'

=wp.IS = J - F ka =J - f

It turns out ( with more group theory ) that a consistent finite - dimensional

rep .
with p

-
-

- O is only possible if WTO also: in

that rep .

,

K 't 5 and - K 't ) '
act as 0 on the representation space ,

and ✓ = ( J - T
,

o
,

o
,

I. B)
#

<

( If you're curious
,

look up the little group and Wigner 's classification )
- -

In other words
,

Wxpn
with a constant  of proportionality

-

h =

J

;pIy=Jz
,

called helicity . Again
, by considering J = It B

,
the possible

values for h are analogous to  adding 2 - components of spin
-

( o
,

o ) rep
-

.
I

, ,z= Ina -

- 0
, so h -

- O = > spin
- O

( I ,
o ) rep

.

. h =
- I o - t 's ⇒ two distinct spin - I representations !

h =
- '

z
and h = t

'

z character u direct

physical States which don't mix under Lorentz

( '

z , tu ) rep : h -

- - I
,

O I xn
,

or t I = > spin - I
,

but h -

- o states are wphysical .

Compared to m > O
,

there is an extra

h I O state which we will have to get
rid of  with gauge invariance

-

-



Unitary representations and Lagrangian ,

I
-

We have seen how to classify representations of the Poincare

group by mass and spin . We now wont to write down equations
of motion

for elementary particles,
Which are invariant under

Poincare transformations and obey the rules of quantum mechanics .

We could start with the Schrodinger equation ,

it It It
,

t > =

HI
It

,
t >

but there are two problems :

- time is treated separately fro - space : t  is a  variable butI is

an operator .
This is explicitly LotLorentz  invariant .

- we can't describe particle creation ! E. g .  in e'te

-

→ Vr
,

an electron and a positron a - e destroyed and two photos
we created

. In non - relativistic QM
,

Conservation of probability
forbids this

.

The solution to both these problems is Cperhaps not obviously )

quantum Fields : a collection of quark - operates at each point
-

in spacetime which evolve in the Heisenberg picture as

§( t
,

I ) =
eiht§ ( o

,
I ) e

' i 't t
← he - c

,

I is just  a label
, Lot an  operate -

( in all of what follows
,

we will set F- c
-

- I : natural units )

Relativistic invariance  is ensured by making sure It C which is built  out

of § and other fields ) transforms appropriately under Poincare.

We will bake this in from the beginning by constructing

Lazying
,

Poincare'

- invariant Functionals of quantum Fields
,

from  which we

can derive equations of motion  using the Euler-Lagrange

equations .



In QM
,

Symmetries are implemented by unitary operators
③

-

-

We will justify the following transformation rules Fo - quantum fields y :

( n
,  a)

Spacetime C n
,

a ) : ecx ) → y
'

Cx ) = Utca
,

a) ylxlucn ,
a) = RCN -

y Ink -

a )
-

-
abstract implementation

explicit  implementation
of Poincare transformation by a  representation
by unitaryoperatesmatrix R and a

acting on Hilbert space Shift  of  coordinates

Internal : Y Ix ) ↳y
'

( × ) = Utlglycx)Ucg , =Rig ,
.gg,

in the asmat  of y

argument  of y is

unchanged fo -

in
symmetries

.

Recall a unitary operator U satisfies Utu -

-

1,1
so Ut -

- a- '

.

We will use

daggers and inverses interchangeably when dealing with unitary operators .

Coleman - Mandala theorem : a consistent relativistic quantum theory

Can only have the symmetries of Poincare times an  internal Symmetry group

GfSo once we have specified G and chosen the representations RG )
,

we will

have Fully specified our quantum freed theory of elementary particles .

Why unitary ? We want  a symmetry operation to preserve inner products . If  a

state K > transforms as Uk >
,

then fo - ay operator O
,

< a lol a > → at Ut outa >
.

For these to be the sure
,

in the

Heisenberg picture Where States are fixed and operators transform
,

we must have 0 → Ut OU
. Taking 0=11 implies Utu -

- I
.

We have already discussed how EH ) is a collection of quark - operators

labeled by Xn
,

So this justifies the abstract transformation rule

if → Ut y U
.

An equivalent way of realizing this symmetry is

to let y itself transform in a representation R
.

A loophole : supersymmetry ! But this is the only one  we know  of
, and it doesn't

describe the standard Model .
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In this course ( as opposed to QFT ) we are more interested

L
in the symmetry transformations on Fields

,

but these are

equivalent descriptions ( i.e . here is a  well-defined prescription fo - constructing UG ) )

Algorithm for Constructing QFT of elementary particle interactions
'

.

• Write down an  action SEE ) -

- Sdk

Lce
, he , .

. . ] which is

a scalar Functional of the fields

- by construction , ensure S is

invent
 under Poincare and

ay
Other desired internal symmetries

a Find equations of motion by variational principle JS = O

- these equations will respect the sa - e symmetries as S
-

itself

. The

quadratic
piece

of L describes free C non - interacting )
- -

fields
.

Fourier - transform these fields into  operators which

create free particles with definite momentum kn

- these plane - une solutions will satisfy a dispersion relation

kn kn -

-
n

-

appropriate for relativistic particles
- the spin of the particle is determined by the Poincare

classification From last  week ( though we  were not rigorous

about  it
, we were looking at unitary representations on

States ) :
( this notation is standard )

spin
- o : Co

,
o ) 41×1 → Oca '

x )

spin - ti . ( I , o ) audio - ( o
, I ) tall → LIT , ( n

'  '

x )
spin - I

-

. ( I , Ankles Munar In
-  '

x )

these are sufficient to describe all particles in te Sm

r The cubic and higher pieces of L describe interactions
. If the

- -

Coefficients ( "coupling constants " ) are small
,

Can write down a

perturbative expansion = > Feynman diagrams
-


