6

What if we tried the same trick with the SU(2) symmetry? We want the Lagrangian to be invariant under the local Symmetry I -> eix (x) T I where T = 02. Guess a covariant derivative, $D_n \overline{\Phi} = \partial_n \overline{E} - ig A_n T^n \overline{\Phi}$. So need 3 spin-1 Fields An, one for each generator of SU(2) (in this case, Pauli metrices). will postpore prost for later, but the correct transformation $fulls are <math>\int A_{\mu} = \frac{1}{g} \partial_{\mu} \propto ti [\alpha, A_{\mu}] (matrix commutator)$ or in components, SA_n = - g dn x - Fabr x b A n. g is called the gauge compling. The corresponding non-abelian Field strength is Frv = (Jn Av - Jv An) - ig [An, Av] & extra tern because Pauli metrices A clever way to write this; On = In - igAn (abstract covariant derivative operato-) $\begin{bmatrix} \mathcal{D}_{n}, \mathcal{D}_{v} \end{bmatrix} = (\partial_{n} - i \mathcal{A}_{n})(\partial_{v} - i \mathcal{A}_{v}) - (\partial_{v} - i \mathcal{A}_{v})(\partial_{n} - i \mathcal{A}_{n})$ = dydv - igdnAv-igAvdn-igAndv-g2AnAv - 2 Jon + ig 2 Am + ig Andu + ig Avon + g2 Av Am $= -ig(\partial_{n}A_{v}-\partial_{v}A_{n}-ig[\Lambda_{n}A_{v}])$ = -ig FAV (also true for U(1), by the may!)

Con show that $\delta F_{nv} = (ix, F_{nv})$, so F_{nv} itself is not parge invariant. (You will do this in HW3.) However, $\delta (F_{nv}, F^{nv}) = \delta F_{nv}, F^{-v} + F_{nv}, \delta F^{nv} = (ix, F_{nv}) F^{nv} + F_{nv}(ix, F^{nv})$ $= ix F_{nv} F^{nv} - F_{nv}(ix) F^{nv} + F_{nv}(ix) F_{nv}$ $- F_{nv} F^{nv} ix$

One (ast trick:
$$Tr(ABC...) = Tr(BC...+A)$$
 (trace is called
invariant, so by taking (a trace, we can cancel (a remaining
terms fairwise and get a gauge invariat object.
 $C = \frac{1}{2} Tr(Fau'F'')$
 $= -\frac{1}{4} \left(F_{a'} F''' + F_{av} F''' + F_{av}^{-1} F'''^{-1} \right) breaks
 $Tr(t'') = Tr(t'') = Tr(t'') = \frac{1}{4}Tr(\frac{1}{0}) = \frac{1}{2}$.
This looks just (i.ke 3 copies of the Lagramme for the UCI) parse fred,
but hidden inside Faufur on interaction terms, i.e.
 $F_{av} F''' = 2 f^{123} A_{-}^{-} A_{-}^{0} 2^{-} A^{1/0}$
Unlike U(1) gauge fields, nonabelian gauge fields interact with themselves!
For future notational convenince, (ct) rebled the U(1) part and unite
 $D_{m} \overline{E} = (\partial_{m} - ig'Y B_{m} - ig W_{m}^{-} t^{-})\overline{E}$
This completes one part of our desired classification:
a Lagramme describing a spin-0 particle of mass on invariat
Unlike U(1) and SU(2). This description requires us to pick
the representations of U(1) and SU(2) on \overline{E} : the former is paraetized
by a number Y, and We (after is a choice of representation metrices,
Where we have class the 2-dimensional representation metrices,
Where we have class the 2-dimensional representation for the family matrices,
 $The Lagramme has \overline{E} and W self-interactions, as used as $\overline{E} - W$
and $\overline{E} - B$ interactions.$$

$$Spin = \frac{1}{2}$$

Spin -
$$\frac{1}{2}$$

Of the Lorentz reps are found in Week 1, we've written down
Lagrangians for (0,6) and ($\frac{1}{2},\frac{1}{2}$). Now we'll finish the
job with ($\frac{1}{2},0$) and (0, $\frac{1}{2}$).
Recall $\vec{A} = \vec{J} + i\vec{K}$ and $\vec{B} = \vec{J} - i\vec{K}$ formed $\mathcal{M}(\lambda)$ algebras
($\frac{1}{2}, 0$): $\vec{B} = \frac{1}{2}\vec{\sigma}$, $\vec{A} = 0 = 3$ $\vec{J} = \frac{1}{2}\vec{\sigma}$.
These act on two-composed objects we will call left-handed spinors:
 $\Psi_{L} \supset e^{\frac{1}{2}(i\vec{\theta}\cdot\vec{\sigma}-\vec{\beta}\cdot\vec{\sigma})}\Psi_{L}$, where $\vec{\theta}$ parametrizes a rotation and $\vec{\beta}$ a boost.
(Note this is not unites]. As with spin-1, we will use more for Applet basis spinor to Fix (n_{2})
Infinitesimal(η , $\vec{O}, \frac{1}{2}$): $\vec{A} = \frac{1}{2}\vec{\sigma}$, $\vec{B} = 0 = 3$ $\vec{J} = \frac{1}{2}\vec{\sigma}$, $\vec{K} = -\frac{i}{2}\vec{\sigma}$
(some behavior under rotations, apposite we wats)
This acts on right-handed spinors: $\Psi_{K} \rightarrow e^{\frac{1}{2}(i\vec{\theta}\cdot\vec{\sigma}+\vec{\beta}\cdot\vec{\sigma})}\Psi_{K}$
 $\vec{J}\Psi_{K} = \frac{1}{2}(i\theta;+\beta_{j})\sigma_{j}\Psi_{K}$

How do we write down a borentz-invariant bagrangian? So far, no Lorentz indices are present to contract with e.g. Inthe.

Conclusion, without derivatives, only a product of 4_{L} ad 4_{R} is coretz-involut. But just this term alone gives equations of motion $4_{L} = 4_{R} = 0$, which is very boring.

Chirality, helicity, and parity

Often convenient to combine massive spinors into a 4-component object $\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix}$. This transforms under the $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ rep., as you saw in HW. The labels L and R refer to chirality, which describes the spinor's formal Loratz transformation properties and is not, strictly speaking an observable. L and R spinors do not mix under Lorentz transformations. Helicity, defined as $\hat{h} = \frac{\overline{P}\cdot\overline{P}}{|\overline{P}|}$, is an observable. For m = 0, a chiral spinor is always an eigenstate of Helicity: iom $\partial_{\mu}\Psi_{R} = 0 = > (E - \overline{P}\cdot\overline{P})\Psi_{R} = 0 = > \hat{h}_{R}^{2} + 1$. Similarly, $\hat{h}_{L} = -1$. We anticipated this when we calculated the fault-kubanks vector for m=0and spin- $\frac{1}{5}$. However, if $m \neq 0$, Ψ_{L} and Ψ_{R} are no larger eigenstates of helicity. We can still prepare states of definite helicity, they will just be linear combinations of Ψ_{L} and Ψ_{R} . Consequently, helicity is not Lorentz-invariant for a massive fermion!

][]

Finally, let's conside a parity transformation, which takes $\vec{x} \rightarrow -\vec{x}$. This is actually an element of O(3,1), but it is not continuously corrected to the identity since it has det $\Lambda = -1$ (the "s" in "so" means det 1). Under parity, $\vec{p} \rightarrow -\vec{p}$, so $\hat{h} \rightarrow -\hat{h}$; parity exchanges Y_{L} and Y_{R} . Indeed, we can also see this from the Lorentz transformations: $e^{\frac{1}{2}(i\vec{e}\cdot\vec{\sigma}-\vec{\beta}\cdot\vec{\sigma})} \rightarrow e^{\frac{1}{2}(i\vec{e}\cdot\vec{\sigma}+\vec{\beta}\cdot\vec{\sigma})} = ince(\vec{\beta}\rightarrow -\vec{\beta})$ $(\frac{1}{2},0)$ $(0, \frac{1}{2})$

Conclusion: a theory containing only 4 or 4 is not invariant under paris. Will be very important in the phenomenology of the weak interaction!