Nonabelian gauge fields (very Grief ty!)
What if we tried the same trick with the SU(2) symmetry? we wat the Lagramion to be invariant under be local Symmetry $\Phi \rightarrow e^{i \alpha^{a}(x) \tau^{a}} \Phi$ where $\tau^{a} \equiv \frac{\sigma^{a}}{2}$. Guess a covariant derivative: $D_{\mu} \Phi=\partial_{\mu} \Phi-i g A_{\mu}^{a} \tau^{a} \Phi$. So need 3 spin-1 fields A_{μ}^{a}, one to each generator of su(2) (in this case, Pauli matrices). will postpone proof for later, but the correct trastormation rules are $\delta A_{\mu}=\frac{1}{g} \partial_{\mu} \alpha+i\left[\alpha, A_{\mu}\right]$ (matrix commutator) or in components, $\delta A_{\mu}^{a}=\frac{1}{g} \partial_{\mu} \alpha^{n}-$ fac $^{b} A_{\mu}^{c}$. g is called the gauge The corresponding non-abelian field strength is

$$
F_{N}=\left(\partial_{n} A_{v}-\partial_{v} A_{\mu}\right)-i g\left[A_{\mu}, A_{v}\right] \longleftarrow \text { extern term because Pali matrices }
$$

A clever way to write this:
$D_{\mu}=\partial_{\mu}-i g A_{\mu} \quad$ (abstract covariant derivative opeato-)

$$
\begin{aligned}
{\left[D_{\mu}, D_{v}\right]=} & \left(\partial_{\mu}-i g A_{\mu}\right)\left(\partial_{v}-i g A_{v}\right)-\left(\partial_{v}-i g A_{v}\right)\left(\partial_{\mu}-i g A_{\mu}\right) \\
= & \partial_{\mu} \partial_{v}-i g \partial_{\mu} A_{v}-i g A_{\mu} \partial_{\mu}-i g g \rho_{\mu} \partial_{v}-g^{2} A_{\mu} A_{v} \\
& -\partial_{\varphi} \partial_{\mu}+i g \partial_{v} A_{\mu}+i g A_{\rho} \partial_{v}+i g A_{v} \partial_{\mu}+g^{2} A_{v} A_{\mu} \\
= & -i g\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}-i g\left[A_{\mu}, A_{v}\right]\right) \\
= & -i g F_{\mu v} \quad \text { (also true for } U(1, \text { by the val!) }
\end{aligned}
$$

Can show that $\delta F_{n v}=\left[i \alpha, F_{v v}\right]$, so $F_{r v}$ itself is not range invariant. (You will do this in $1+W 3$.) However,

$$
\begin{aligned}
& \left.\delta\left(F_{n v} \cdot F^{\sim v}\right)=\delta F_{n} \cdot F^{\sim v}+F_{v v} \cdot \delta F^{\sim v}=\left[i \alpha, F_{v v}\right] F^{\sim v}+F_{m v} C_{i} \alpha, F^{v v}\right] \\
& =i \alpha F_{m} F^{n v}-F_{r v}\left(i \alpha / F^{\sim v}+F_{r v}(/ \alpha) F_{m v}\right. \\
& \text { - uru } F^{\mu \nu} \text { ia }
\end{aligned}
$$

One last trick: $\operatorname{Tr}(A B C \cdots)=\operatorname{Tr}(B C \cdots A)$ (trace is caclicull, invrriant, so by taking te trace, we can cancel te remaining terns pairwise and get a gauge- invariant object.

$$
\begin{aligned}
& \alpha>-\frac{1}{2} \operatorname{Tr}\left(F_{\mu v} \cdot F^{r v}\right) \\
&=-\frac{1}{4}\left(F_{\mu v}{ }^{\prime} F^{\sim v}{ }^{1}+F_{\mu v}{ }^{2} F^{\sim v 2}+F_{\sim v}^{3} F^{\sim v 3}\right) \text { because } \\
& \operatorname{Tr}\left(\left(\tau^{\prime}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau^{2}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau_{3}\right)^{2}\right)=\frac{1}{4} \operatorname{Tr}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2} .
\end{aligned}
$$

This looks just like 3 copies of the Lagrassion for the $u C(1)$ gauge field, Gut hidden inside $F_{w} F^{\sim v}$ an interaction terms, ie.

$$
F_{r v}^{1} F^{r v 1} \supset f^{123} A_{m}^{2} A_{v}^{3} \partial^{m} A^{1 v}
$$

Unlike U(1) gauge fields, nonabelian gauge fields interact with themselves! For future notational convenience, let's relabel the ul) part and write

$$
\begin{aligned}
& D_{\mu} \Phi=\left(\partial_{\mu}-i g^{\prime} y B_{\mu}-i g W_{n}^{a} \tau^{a}\right) \Phi \\
& \alpha=\left|D_{\mu} \Phi\right|^{2}-n^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{4}-\frac{1}{4} B_{\mu \nu} B^{\mu v}-\frac{1}{4} W_{m \nu}^{a} W^{n v a}
\end{aligned}
$$

This completes ore port of our desired classification:
a Lagrarsion describing a spins particle of mass m invainat under Poincare transformations and the caused) internal symmetries U(1) and su(2). This description requires us to pick the representation g of $u(1)$ and su(2) on Φ : the former is paracteized by a number Y, and k latter is a choice of representation matrices, where we have chosen be 2-dimensional rep. using the pauli matrices, The Laparion has I and W sulf-interactions, as well as $\Phi-W$ and I- B interactions.

Spin $-\frac{1}{2}$
Of the Lorentz reps we found in week 1, wive written down Lagrangian for $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Now well finish the job with $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$.
Recall $\vec{A}=\frac{\vec{j}+i \vec{k}}{2}$ ar $\vec{B}=\frac{\jmath-i \vec{k}}{2}$ formed sui) algebras

$$
\left(\frac{1}{2}, 0\right): \vec{B}=\frac{1}{2} \vec{\sigma}, \vec{A}=0 \Rightarrow \vec{j}=\frac{1}{2} \vec{\sigma}, K=\frac{1}{2} \vec{\sigma}
$$

These act on two-comporent objects we will cull left-handed spinous: $\psi_{L} \rightarrow e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}-\vec{\beta} \cdot \vec{\theta})} \psi_{L}$, where $\vec{\theta}$ paracterices a rotation ad $\vec{\beta}$ a boost.
 In finitesimell $1, \delta \psi_{L}=\frac{1}{2}\left(i \theta_{j}-B_{j}\right) \sigma_{j} \psi_{L}$. (In Aw 2 you constructed the finite rep.)

$$
\text { Similarly, }\left(0, \frac{1}{2}\right): \widehat{A}=\frac{1}{2} \vec{\sigma}, \vec{B}=0 \Rightarrow \vec{j}=\frac{1}{2} \vec{\sigma}, \vec{K}=-\frac{1}{2} \vec{\sigma}
$$

(same behavior under rotations, apposite mere boots)
This acts on right-havled spinari: $\psi_{R} \rightarrow e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}+\vec{\beta} \cdot \vec{\sigma})} \psi_{R}$

$$
\delta \psi_{R}=\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R}
$$

Take Hermitic conjugates:

$$
\begin{aligned}
& \delta \psi_{L}^{+}=\frac{1}{2}\left(-i \theta_{j}-\beta_{j}\right) \psi_{L}^{+} \sigma_{j} \\
& \delta \psi_{R}^{+}=\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j}
\end{aligned}
$$

How do we write down a Lorentz-inuniat Lagrangian? So for, no Lorentz indices are present to contract with eeg. $\partial_{\mu} \psi_{L}$.

Can try just multiplying spinners, eq. $\psi_{R}^{+} \psi_{R}$, but (perhaps surprisingly) this is not Lorentz invariant:

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \psi_{R}\right) & =\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j} \psi_{R}+\frac{1}{2} \psi_{R}^{+}\left(i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =\beta_{j} \psi_{R}^{+} \sigma_{j} \psi_{R} \neq 0 . \text { Actually, we keen this: Lorenz reps. not misery'. }
\end{aligned}
$$

On the other had s the product of a left-haded and risht-handed spinor is invariant:

$$
\begin{aligned}
\delta\left(\psi_{L}^{+} \psi_{R}\right) & =\frac{1}{2}\left(-i \theta_{j}-\beta_{j}\right) \psi_{L}+\sigma_{j} \psi_{R}+\frac{1}{2} \psi_{L}^{+}\left(i \sigma_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =0
\end{aligned}
$$

This int Hermitian, so add its Hermitian conjugate.
$L \supset m\left(\psi_{L}+\psi_{R}+\psi_{R}{ }^{+} \psi_{L}\right) \in$ will see $h_{\text {is }}$ is a mass term for

$$
\text { Spin- } \frac{1}{2} \text { fields }
$$

Conclusion: without derivatives, only a product of ψ_{L} ad ψ_{k} is loretz-inuciat. But just this tern alone gives equations of motion $\psi_{L}=\psi_{R}=0$, which is very boring.
Consider $\psi_{k}^{+} \sigma, \psi_{R}$.

$$
\begin{aligned}
& \delta\left(\psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)=\frac{1}{2}\left(-i \theta_{j}+h_{j}\right) \psi_{k}{ }^{+} \sigma_{j} \sigma_{i} \psi_{k}+\frac{1}{2}\left(i \theta_{j}+\mu_{j}\right) \psi_{R}{ }^{+} \sigma_{i} \sigma_{j} \psi_{R} \\
& =\frac{\beta_{j}}{2} \psi_{R}{ }^{+} \underbrace{\sigma_{i}, \sigma_{j}}_{\text {articomnutate }}\} \psi_{k}+\frac{i \sigma_{j}}{2} \psi_{R}^{+}[\underbrace{\left.\sigma_{i}, \sigma_{j}\right]}_{\text {commutator }} \psi_{R} \\
& =2 \delta_{i j} \quad=2 i \epsilon^{i j k} \sigma_{k} \\
& =\beta_{i} \psi_{R}^{+} \psi_{R}-\epsilon_{i j k} \sigma_{j} \psi_{R}^{+} \sigma_{k} \psi_{R}
\end{aligned}
$$

Let's dethe $\sigma^{\mu}=(\mathbb{1}, \tilde{v})$. Claim: $\psi_{R}{ }^{+} \sigma^{\mu} \psi_{R} \equiv\left(\psi_{R}{ }^{+} \psi_{R}, \psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)$ has precisely, the Lorentz tronstormation properties of a 4 -vector $V^{m} \equiv\left(v^{0}, \vec{v}\right)$:

$$
\begin{aligned}
& \delta V^{0}=\vec{\beta} \cdot \vec{V} \\
& \delta \vec{V}=\vec{\beta} v^{0}-\vec{\theta} \times \vec{v} \quad \text { (recall Nw } \quad \text {) }
\end{aligned}
$$

AR CAUTION: σ^{μ} is NOT a 4-vector. It is just a collection of 4 matrices.
However, the notation and the pervious calculation make it clear that $i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}$ is Loretz-invmiant (factor of i makes his term Hermitian)
Similarly, $\bar{\sigma}^{\mu} \equiv(\mathbb{1},-\vec{\sigma})$ is Loratz-invariant when sandwiched between ψ_{L}.
$\Rightarrow \alpha=i \psi_{R}{ }^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}+i \psi_{L}{ }^{+} \bar{\sigma}^{\wedge} \partial_{\mu} \psi_{L}-m\left(\psi_{R}{ }^{+} \psi_{L}+\psi_{L}{ }^{+} \psi_{R}\right)$ is he Lagoasian
for a left-handel and a right-harled spin- $\frac{1}{2}$ particle coupled with a mass term. Note there is only are derivative, so $[\psi]=\frac{3}{2}$
Equations of motion: treat ψ_{n} add $\psi_{R}{ }^{+}$as independent, so corm. For $\psi_{n}{ }^{+}$, ψ_{L}^{+}ae

$$
\begin{aligned}
& i \sigma^{\mu} \partial_{\mu} \psi_{R}-m \psi_{L}=0 \\
& i \bar{\sigma}^{\mu} \partial_{m} \psi_{L}-m \psi_{R}=0
\end{aligned}\left\{\begin{array}{l}
\text { Dirac equation } \\
\begin{array}{l}
\text { (we will see this in more } \\
\text { detail rom soon!) }
\end{array}
\end{array}\right.
$$

Con show (HW 3) that both ψ_{L} and ψ_{R} satisfy Klein-Godon eqn, so indeed, m is acting like a mass.
ψ_{R} and ψ_{L} live in differat representations of Loratz grove, so con trastorn different under internal symmetries. Suppose $\psi_{L} \rightarrow e^{i Q_{1} \alpha} \psi_{L}$ ad $\psi_{R} \rightarrow e^{i \alpha_{2} \alpha} \psi_{R}$. Then kinetic terns are invariant, but not mass terns!

$$
\psi_{R}{ }^{+} \psi_{L} \rightarrow e^{i\left(\alpha_{1}-\alpha_{2}\right) \alpha_{2}} \psi_{L}
$$

This fact determines an enormous amount of the structure of the SM.
Ignoring mass terns for now, we con see that i $\psi_{L, R}^{+} \bar{\sigma}^{m} \partial_{\mu} \psi_{L, R}$ are invariant under any globul U(1) or SU(N) transtomentions, under which ψ^{+}and ψ temetorm opposites.
To promote the ie to local symmetries, just replace

$$
\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}-i g Q A_{\mu} \text { or } D_{\mu} \equiv \partial_{\mu}-i g T^{a} A_{\mu}^{a} \text { as for scalars. }
$$

\Rightarrow interaction between spin- $\frac{1}{2}$ ale spin-1, e.g, electron-photon.

Chicality, helicity, and parity
often convenient to combine massive spinors into a 4-component object $\psi=\binom{\psi_{L}}{\psi_{R}}$. This transforms under the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ rep., as you saw in HW . The labels L and R refer to chirality, which describes the spinor's formal lorentz transformation properties and is not, strictly, speaking, an observable. Land R spinous do not mix under Lorentz teanstornctions. Helicity, defined as $\hat{h}=\frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}$, is an observable. For $m \rightarrow 0$, a chiral spinor is always an eigenstate of Lelicity:

$$
i \sigma^{m} \partial_{\mu} \psi_{R}=0 \Rightarrow \quad(E-\vec{\sigma} \cdot \vec{p}) \psi_{R}=0 \Rightarrow \hat{h}_{R}=+1 \text {. Simian }\left(a r l y, \hat{h}_{L}=-1\right. \text {. }
$$

we anticipated this when we calculated the Panli-tubanski recto to $n=0$ and spin- $\frac{1}{2}$. However, if $m \neq 0, \psi_{L}$ ad ψ_{R} are no longer eigestates of helicits. We can still prepare states of definite hecicity, the, will just be linear combinations of ψ_{2} ad ψ_{R}. Consequently, Lelicly is not Lorentz-invaint for a massive fermion!

boost: (run foster than the particle: \hat{p} changes sign out spin stans same)

Finally, ret's consider a parity transformation, which takes $\vec{x} \rightarrow-\vec{x}$. This is actually an element of $O(3,1)$, but it is not continuously corrected to the identity since it has $\operatorname{det} \Lambda=-1$ (the " 5 " in "so" rear def 1). Under parity, $\vec{p} \rightarrow-\vec{p}$, so $\hat{h} \rightarrow-\hat{h}$: parity exchanes ψ_{L} add ψ_{R}. Indeed we can also see this from the Lorentz transformations.

$$
\begin{gather*}
e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}-\vec{\beta} \cdot \vec{\sigma})} \rightarrow e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}+\vec{\beta} \cdot \vec{\sigma})} \quad \text { 保cc } \vec{\beta} \rightarrow-\vec{\beta} \\
\left(0, \frac{1}{2}\right) \tag{1}
\end{gather*}
$$

Conclusion: a theory containing only ψ_{L} or ψ_{R} is not invariant under pains. Will be very important in the phenomenology of be weak interaction!

