P and $C P$ violation
The weak interaction is special for two reasons:

- The interactions of the W and 2 bosons treat left-and righthanded fermions differently, which violates parts symmetry P.
- The CKM matrix is complex instead of real, which violates a combination of charge conjugation symmetry and parity Symmetry called CP.
We will first define how P and $C P$ transformations act on fields, and then examine the phenomenological consequences of the violation of these symmetries by the weak interactions.

Parity temsformations
As we briefly discussed nay weeks ago, $p:(t, \vec{x}) \rightarrow(t,-\vec{x})$ implements spatial inversions and has a representation on 4 -vectors as

$$
P=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & -1
\end{array}\right) \text {. Note that this matrix has } \operatorname{det}=-1 \text {, so it is }
$$

not an element of $\operatorname{so}(3,1)$, fut rather $O(3,1)$. Because of this, Lorentz-invaiant equations of notion do not guarantee invariance under P. However, theories of free bosonic fields (scalars and rectors) are invariant under P (see Schuartz see. 11.5). Since $P^{2}=1$, it has eigenwabes士1. Spin-0 particles with $P=+1$ are called scalars, and those with $P=-1$ are called psecudoscalcors. For example, $P\left|\pi^{\circ}\right\rangle=-\left|\pi^{\circ}\right\rangle$, so the pion is a psendoscalar. If the Lagrangian of a theory is invariant under P, then parity is a multiplicative quantion number: oe product of the parities, of the initial states equals the product of the parities of the final states.
Similarly, for spin -1:, $P\left|V_{0}(t, \bar{x})\right\rangle= \pm\left|V_{0}(t,-\vec{x})\right\rangle, \quad P\left|V_{i}(t, \bar{x})\right\rangle=\mp\left|V_{i}(t,-\vec{x})\right\rangle$. The parity is determined 6 the eigenvalue of the spatial componat: massless vectors have parity -1 since $A_{i}(t, \vec{x}) \rightarrow-A_{i}(t, \vec{x})$.
(spin-1 particles with $\rho=+1$ are called pseudovector or axial rectos) 8
For fermions, we sow in ow discussion of the Lorentz group that P exchanges L and R spinors. In 4 -component notation,

$$
P^{\prime}, \psi \rightarrow \gamma^{0} \psi
$$

Therefore, we can compute (Suppressing the spacetime argmat)

ρ^{0} : $\bar{\psi} \gamma^{\mu} \psi \xrightarrow{\psi} \psi^{+} \gamma^{0}{\underset{\sim}{c}}_{0}^{0} \gamma^{\mu} \gamma^{0} \psi=\bar{\psi}\left(\gamma^{\mu}\right)^{+} \psi$
Since $\left(r^{0}\right)^{+}=r^{0}$ and $\left(r^{i}\right)^{r}=-r^{i}$, the time and space component is of this Combination of spines transforms just like a vector with $\rho=-1$.
Therefore,
$P: \bar{\psi} \not A \psi \rightarrow \bar{\psi} A \psi$ since spatial components are $(-1)(-1)=+1$ add time components are $(+1)(+1)=+1$.
However, inserting a r^{5} charges the signs:
P: $\bar{\psi} \notin r^{5} \psi \rightarrow-\psi \notin r^{5} \psi$. (for 2 couplings, this tern was what we called c_{A})
A Lagrangian that mixes γ^{n} with $\gamma^{n} \gamma^{s}$ (like the weak interaction!) is not symmetric under parity.
Example: polarization in w decay

$$
W \rightarrow e^{+} v_{e}
$$

Ignoring constants: $\quad M \propto \bar{u}\left(\rho_{2}\right) \gamma^{\mu}\left(\frac{1-r^{5}}{2}\right) v\left(\rho_{1}\right) \epsilon_{\mu}\left(\rho_{w}\right)$
Say w is initially, at rest: $p_{w}=\left(m_{w}, 0,0,0\right)$. Then 3 line-ly inteperet polvization vectors are $\epsilon_{r}^{x}=(0,1,0,0), \epsilon_{\mu}^{y}=(0,0,1,0), \epsilon_{m}^{2}=(0,0,0,1)$. These satisfy $\epsilon^{(i)} \cdot \epsilon^{(j)}=-\delta^{i j}, t^{(i)} \cdot p_{w}=0$.

Define 2 -axis as direction of outgoing neutrino. In limit of massless neutrinos, neutrino is always left-hanled: spin opposite direction of motion, and only top two components of 4 component spinor are nonzero. For neutrino enemy $E_{v}, u\left(p_{2}\right)=\sqrt{2 E_{v}}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ (note there is a very bad typo in Schuatz eq. (11.26)! See errata on Schwartz book website.) The $\binom{0}{1}$ in the upper two components specifies spin down along z axis.
Positron moves in -2 direction to conserve momentum. Positron spinous can be $V^{\prime}\left(p_{1}\right)=\left(\begin{array}{c}\sqrt{E_{1}-p_{2 e}} \\ 0 \\ -\sqrt{E_{e}+p_{2 c}} \\ 0\end{array}\right)$ or $V^{(2}\left(p_{1}\right)=\left(\begin{array}{c}0 \\ \sqrt{E_{e}+p_{2 c}} \\ 0 \\ -\sqrt{E_{e}-p_{z_{e}}}\end{array}\right)$. $V^{(1)}$ represents a spin-down position while $v^{(2)}$ represents a spin-up position: note that the meaning of $\binom{1}{0}$ w. $\binom{0}{1}$ spinors is reversed for antiparticles compared to particles. This is a bit were, but true (can check by applying spin operator).
Let's compute the squared amplitude for

$$
\stackrel{\rightarrow}{e^{+} \text {arrows }=\text { spin direction. }} \stackrel{\bullet}{l} \text {, ie. use } V^{(2)}\left(p_{1}\right)
$$ Compute M for each W polarization, square, and average.

$$
\begin{aligned}
& =0 . \\
& \text { Similarly, } M_{y}^{\uparrow}=\sqrt{2 E_{v}} \sqrt{E_{e}+p_{z e}}\left(-(01) \sigma^{2}(00)\right)\left(\begin{array}{l}
\left(\begin{array}{l}
0 \\
1 \\
(0) \\
0
\end{array}\right)
\end{array}\right)=0 \text {. } \\
& M_{2}^{\uparrow}=\sqrt{2 E_{v}} \sqrt{E_{e}+P_{2 e}}\left(\begin{array}{llll}
-\left(\begin{array}{lll}
0 & 1
\end{array}\right) \sigma^{3} & (0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1 \\
(0 \\
0
\end{array}\right)=\sqrt{2 E_{v}} \sqrt{E_{e}+P_{2 e}} \\
& \Rightarrow \frac{1}{3}\left(\left|\mu_{x}^{\hat{q}}\right|^{2}+\left|\mu_{y}^{\dagger}\right|^{2}+\left|\mu_{2}^{\hat{q}}\right|^{2}\right) \propto E_{v}\left(E_{e}+p_{2 e}\right) \text {. }
\end{aligned}
$$

Interpretation: election spin is an EPR-like measurement of W spin. Along neutrino axis, W could have had spin $-1,0$, or 1: on fy spin -o has a nonvanishing amplitude, consistent with angular rometum conservation.

Momentum conservation: $p_{2 e}=-E_{v}$. To find $E_{1}, \quad p_{w}=p_{1}+p_{2}=\left(p_{w}-p_{2}\right)^{2}=p_{1}^{2}$,
So $m_{w}{ }^{2}-2 m_{w} E_{v}=m_{e}^{2}$, and $E_{v}=\frac{m_{w}{ }^{2}-m_{e}^{2}}{2 m_{w}} . \quad E_{e}=m_{w}-E_{v}=\frac{m_{u}^{2}+m_{e}^{2}}{2 m_{w}}$

$$
E_{v}\left(E_{e}+\rho_{2 e}\right)=\left(\frac{m_{w}^{2}-m_{e}^{2}}{2 m_{w}}\right)\left(\frac{m_{w}^{2}+m_{e}^{2}}{2 m_{w}}-\frac{m_{w}^{2}-m_{e}^{2}}{2 m_{w}}\right) \approx \frac{m_{w}}{2} \frac{m_{e}^{2}}{m_{w}^{2}}
$$

Note that this vanishes in limit me $\rightarrow 0$! If we repeated the calculation for the other position spin, we would find $\left.\left.\langle | M^{\downarrow}\right|^{2}\right\rangle \propto \frac{m_{w}}{2} \times \theta(1)$.
So the relative probability of positron having spin aligned w/direction of notion is $m_{w}{ }^{2} / m_{e}{ }^{2} \sim 10^{101}$. Could use this to give an unambiguous definition of "left." The me ${ }^{2}$ suppression is known as helicits suppression and we will see it again next week. CP transformations
Another discrete symmetry operation is charge conjugation, denoted C. Roughly speaking, it takes a spin cup electron to a spin-down position."
C: $\psi \rightarrow-i \gamma_{\nu} \psi^{3}$
Under $C, \bar{\psi} \psi \rightarrow \bar{\psi} \psi$ and $\bar{\psi} \nsim \psi \rightarrow \bar{\psi} \phi \psi$ (See Schwartz 11.4), So free Dirac Lagrangian is invariant under charge conguquation. For gauge interactras, $\bar{\psi} \gamma^{\mu} \psi \rightarrow-\bar{\psi} \gamma^{\mu} \psi$, so if we define $C^{:} A_{\mu} \rightarrow-A_{n}$, then $\bar{\psi} \not O \psi$ is invariant. This is a bit weird since A is real, but note that $C^{2}=1$, so A_{μ} is still an eigenstate of C, just with eigenvalue -1 . We can also combine C and P to see under what conditions the SM Lagrangian is invariant under the combined transformation. Can show the following transformation properties under $C P$.

$$
\begin{array}{ll}
\bar{\psi}_{i} \psi_{j}(t, \vec{x}) \rightarrow+\bar{\psi}_{j} \psi_{i}(t,-\vec{x}) & \bar{\psi}_{i} \gamma^{5} \psi_{j}(t, \vec{x}) \rightarrow-\bar{\psi}_{j} \gamma^{5} \psi_{i}(t,-\vec{x}) \\
\bar{\psi}_{i} \not \not A \psi_{j}(t, \vec{x}) \rightarrow+\bar{\psi}_{j} \not A \psi_{i}(t,-\vec{x}) & \bar{\psi}_{i} \not A \gamma^{5} \psi_{j}(t, \vec{x}) \rightarrow \bar{\psi}_{j} \not \not A \gamma^{5} \psi_{i}(t,-\vec{x})
\end{array}
$$

where $A=A, w, 2$ is any vector fold.
Consider the part of the SM Lagrargim containing the W.

$$
\alpha_{w}=\frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{u}_{i} V_{i j} W^{+}\left(\frac{1-r^{5}}{2}\right) d_{j}+\bar{d}_{i} V_{i j}^{+} W^{-}\left(\frac{1-r^{5}}{2}\right) u_{j}\right]
$$

under C, complex fields transform to their conjugates, so C takes w^{+}to w^{-}. By the above, all the fermions transform by changing order but not sign, so
$\alpha_{w} \xrightarrow{C P} \frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{d}_{j} V_{i j} W^{-}\left(\frac{1-r^{5}}{2}\right) u_{i}+\bar{u}_{j} V_{i j}^{+} W^{+}\left(\frac{1-\gamma^{5}}{2}\right) d_{i}\right]$
In matrix form, $\bar{u} V\left(\frac{1-r^{s}}{L}\right) d \rightarrow \bar{u}\left(V^{\top}\right)^{+}\left(\frac{1-r^{s}}{2}\right) d=\bar{u} V^{p}\left(\frac{1-r^{s}}{2}\right) d$.
So if $V=V^{3}$, ie. if all CKM elements are real, $C P$ is conserved.
However, as discussed last week, V has one complex phase, which is known (as you now can see) as a CP-violatily phase.
This is not a basis-independent statement since we can always redefine the quark fields with phase rotations that leave the mas matrix invariant, but determinants are basis-independent:
$\operatorname{det}\left[y_{n}, y_{d}\right]=-\frac{16}{V^{6}}\left(m_{t}-m_{c}\right)\left(m_{t}-m_{n}\right)\left(m_{c}-m_{n}\right)\left(m_{b}-m_{s}\right)\left(m_{b}-n_{d}\right)\left(m_{c}-n_{d}\right) J$,
where J is the Jarlskon invariant $J=\sin \theta_{12} \sin \theta_{2}, \sin \theta_{1} \cos \theta_{12} \cos \theta_{2,} \cos \theta_{O_{1}}^{2} \sin \delta$ J vanishes if and only if the CP-violatiry phase $\delta=0$.
$C P$ violation and $K \bar{K}$ mixing
Let's look at some observable consequences of $C P$ violation. The lightest mesons containing strange quarks are fe neutral kaons $K^{\circ}=\bar{s} d$ and $\bar{K}^{0}=\overline{d s}$. $P_{\text {is conserved in the strong interactions, }}$ So the parity of the kaon can be determined from its production: $P\left|k^{0}\right\rangle=-\left|k^{0}\right\rangle, P\left|\bar{k}^{0}\right\rangle=-\left|\bar{k}^{0}\right\rangle$. Cexchanges particles and antiparticles, So $\left(\left|k^{0}\right\rangle=\left|\overline{k^{0}}\right\rangle\right.$ and $\left\langle\mid \overline{k^{0}}\right\rangle=\left|k^{0}\right\rangle$
\Rightarrow the $C P$ eigenstates are linear combinations:

$$
\begin{array}{cc}
K_{1}=\frac{1}{\sqrt{2}}\left(K^{0}+\bar{k}^{0}\right), & K_{2}=\frac{1}{\sqrt{2}}\left(k^{0}-\bar{k}^{0}\right) \\
C P=+1 & C P=-1
\end{array}
$$

The pions $\pi^{0}, \pi^{ \pm}$have $P=-1$. So a neutral state with tho pions ($\pi^{0} \pi^{0}$, or $\pi^{+} \pi^{-}$) has $C P=+1$, and a state witt three pions $\left(\pi^{0} \pi^{0} \pi^{0}\right.$ or $\pi^{0} \pi^{+} \pi^{-}$) has $C P=-1$. If $(P$ were conserved in the Stardal Model, K_{2} should never decay to $\pi \pi$. Since $M_{k}=498 \mathrm{MeV}$ and $3 m_{\pi} \approx 405 \mathrm{meV}$, there is a strong phase space suppression for the 3π decay, as well as factors of $\frac{1}{4 \pi}$ from the additional $\frac{d^{3} p}{(2 \pi)^{3}}$.

Therefore, K_{2} has a much smaller decay width, and a longer lifetime! 12 Experimentally, there are two mass eigenstates, K_{L} and K_{s} ("Ion," and "short"), with $\tau_{S}=0.895 \times 10^{-10}$, $\tau_{L}=5.116 \times 10^{-8} \mathrm{~s}$. To produce pure K_{L}, just wait long e rough:

In 1964, it was found that $B r\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right) \approx 0.2 \%$; this indicates CP violation! At a Feynman diagram level, $K_{L} \rightarrow \pi^{+} \pi^{-}$must involve a weak interaction vertex:

However, K_{L} is a superposition of $s \bar{d}$ and $d \bar{s}$, and these states can mix:

$$
\alpha V_{c s} V_{c d}^{B} V_{t d}^{B} V_{t s}
$$

This product of CKM elements contains the CP-violating phase.
For HW you will look at mixing in the $\beta^{\circ} \overline{B^{O}}$ system which contains 6 quarts instead of s quarks.

One final aside: (P violation is a necessary condition to generate the matter-anfimatter asymmetry in the universe. However, the cP violation Measured in these meson systerng is not sufficient to generate the observed asymmetry! There must be additional sources of $C P$ violation besond the Standard Model. More on this in the last week of the course!

