Let's revisit the Lie algebra of the Lorentz group, but now with Einstein index notation.

$$
\begin{aligned}
& M=1+\epsilon X \longrightarrow M_{v}^{\mu}=\delta^{\mu}+\epsilon \omega_{v}^{\mu} \\
& \eta M^{\top} \eta M=\mathbb{1} \longrightarrow \eta_{\nu \lambda} \Lambda_{\rho}^{\lambda} \eta^{\rho \sigma} \Lambda_{\sigma}^{\mu}=\delta_{v}^{\mu} \text { or } \Lambda_{\mu}^{\rho} \Lambda_{v}^{\sigma} \eta_{\rho \sigma}=\eta_{m_{V}} \\
& \text { tranpoise contract "SE to NW" contraction "NE to SW" }
\end{aligned}
$$

Plug in: $\eta_{v \lambda}\left(\delta_{\rho}^{\lambda}+\epsilon w_{\rho}^{\lambda}\right) \eta^{p \sigma}\left(\delta_{\sigma}^{\mu}+\epsilon w_{\sigma}^{\hat{M}}\right)=\delta_{v}^{n}$

$$
\begin{aligned}
& \delta \%+\epsilon \eta_{v \lambda} w^{\lambda} \rho \eta^{\rho \sigma} \delta_{\sigma}^{\mu}+\epsilon \eta_{v \lambda} \delta_{\rho}^{\lambda} \eta^{\rho \sigma} \omega_{\sigma}^{\mu}+\theta\left(\epsilon^{2}\right)=\delta / u \\
& \epsilon \eta_{v \lambda} \eta^{\rho \mu} w_{p}^{\lambda}+\epsilon \eta_{v \lambda} \eta^{\lambda \sigma} w_{\sigma}^{\mu}=0 \\
& \epsilon \eta_{v \lambda}\left(\eta^{\rho \mu} w^{\lambda} \rho+\eta^{\lambda \sigma} w_{\sigma}^{\mu}\right)=0 \\
& w^{\lambda \mu}+w^{\mu \lambda}=0
\end{aligned}
$$

$\Rightarrow w$ is an antisymmetric 2 -index tensor w 16 independat comporats late order of indices! This metes
A gereal infinitesimal Lorentz transformation can be written

$$
X=\frac{i}{2} w_{m v} M^{m v}=i\left(w_{01} M^{01}+w_{02} M^{02}+w_{03} M^{07}+w_{12} M^{12}+w_{13} m^{13}+w_{2} M^{23}\right)
$$

If we take $M^{i 0}=-M^{0 i}=K^{i}$ and $M^{i j}=-M^{j i}=\epsilon^{i j k} j^{k}$, we ca write

$$
X=i\left(\begin{array}{cccc}
0 & w_{01} & w_{02} & w_{03} \\
w_{01} & 0 & -w_{12} & w_{13} \\
w_{02} & w_{12} & 0 & -w_{23} \\
w_{03} & -w_{13} & w_{23} & 0
\end{array}\right) \quad \text { EX }{ }_{\beta}^{\alpha}, 44 \times 4 \text { matrix wind }
$$

Alterative parametrization. $\quad X=i \vec{\theta} \cdot \vec{j}+i \vec{\beta} \cdot \vec{k} \quad\left(\beta_{i}=w_{o i}, \epsilon_{i}=\epsilon_{i j k} \theta_{k}\right)$
Covariant notation: $\left(M_{\Gamma}^{m \nu}\right)_{\beta}^{\alpha}=i\left(\eta^{m \alpha} \delta_{\beta}^{v}-\eta^{v \alpha} \delta_{\beta}^{\mu}\right)$

Now can compute commentator:

$$
\begin{aligned}
& {\left[M^{\mu \nu}, M^{\rho \sigma}\right]_{a}^{\alpha}=\left(M^{\mu \nu}\right)_{r}^{\alpha}\left(M^{\rho \sigma}\right)_{b}^{r}-\left(M^{\rho r}\right)_{r}^{\alpha}\left(M^{\sim v}\right)_{b}^{\gamma}} \\
& =-\left(\eta^{m \alpha} \delta_{r}^{v}-\eta^{v \alpha} \delta_{r}^{\mu}\right)\left(\eta^{p r} \delta_{\rho}^{\sigma}-\eta^{\sigma r} \delta_{b}^{\prime}\right)+\left(\eta^{p \alpha} \delta_{r}^{\sigma}-\eta^{\sigma \alpha} \delta_{r}^{p}\right)\left(\eta^{\mu v} \delta_{p}^{v}-\eta^{v r} \delta_{\rho}^{n}\right) \\
& =-\eta^{m \alpha} \eta^{\rho v} \delta_{\beta}^{\sigma}+\eta^{\sigma \alpha} \eta^{\nu \rho} \delta_{\beta}^{\mu}+\left(3 \operatorname{sim}^{\prime} l \alpha\right) \\
& =-i \eta^{\nu \rho} i\left(\eta^{\sigma \alpha} \delta_{\rho}^{\mu}-\eta^{\mu \alpha} \delta_{0}^{\sigma}\right)+(3 \operatorname{sim}(1 \omega) \\
& =-i \eta^{v \rho}\left(M^{\sigma \mu}\right)_{o}^{\alpha}+\left(3 \text { sim. }{ }^{\prime} \sigma_{\alpha}\right) \\
& \Rightarrow\left[\mu^{\mu v}, M^{\rho \sigma}\right]=-i\left(\eta^{\mu \rho} M^{v \sigma}-\eta^{\mu \sigma} \mu^{\nu \rho}+\eta^{v \sigma} \mu^{\mu \rho}-\eta^{\nu \rho} \eta^{\mu \sigma}\right)
\end{aligned}
$$

Paincarci transformations in matrix to rm:
$x^{m} \rightarrow x^{m}+\lambda^{n}$ con be implemated as a matrix with one extra entry':

$$
\left(\begin{array}{lllll}
1 & & & & \lambda^{0} \\
& 1 & & & \lambda^{\prime} \\
& & 1 & 1 & \lambda^{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{0} \\
x^{\prime} \\
x^{2} \\
x_{3} \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{0}+\lambda^{0} \\
x^{1}+\lambda^{\prime} \\
x^{2}+\lambda^{2} \\
x^{3}+\lambda^{2} \\
1
\end{array}\right)
$$

So a green Loratz+trangiation can be writer as

$$
\begin{aligned}
& (\lambda, \Lambda)=\left(\begin{array}{cc}
\Lambda & 1 \\
\Lambda & 1 \\
- & 1 \\
0 & 1
\end{array}\right) \\
& \left(\lambda_{1}, \Lambda_{1}\right) \cdot\left(\lambda_{2}, \Lambda_{2}\right)=\left(\begin{array}{cc}
\Lambda_{1} & \lambda_{1} \\
\hdashline 0 & \ddots
\end{array}\right)\left(\begin{array}{cc}
\Lambda_{2} & 1 \\
-0 & \lambda_{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\Lambda_{1} \Lambda_{2} & 1 \\
\hdashline & \lambda_{1}+\Lambda_{1} \lambda_{2} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Infinitesimal translation is still a vector, lefts call it pere:

$$
\begin{aligned}
& P^{0}=i\left(\begin{array}{cc}
0 & 1 \\
0 \\
0 & i \\
i & 0 \\
0
\end{array}\right), P^{\prime}=i\left(\begin{array}{cc}
0 & 0 \\
- & 1 \\
0 & 0 \\
0 & 0
\end{array}\right), \text { ere. } 0 \text { instead of } 1 \text { because } p^{m} \text { is } \\
& {\left[P^{n}, p^{v}\right]=0 \quad(H w)} \\
& \text { infinitesimal.' } x^{n} \rightarrow x^{n}+\lambda^{\mu} \text { is like } M\left(\lambda^{-1}\right)=1+\in P^{n}
\end{aligned}
$$

One last commutation relation to compute:

$$
\begin{aligned}
& {\left[M^{\mu \nu}, p^{\sigma}\right]_{\beta}=\left(\begin{array}{ccc}
\left(M^{\mu \nu}\right)_{\beta}^{1} & 0 \\
\hdashline 0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i\left(\rho^{\sigma}\right)_{\alpha} \\
-0 & 1 \\
\hdashline 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1\left(\rho^{\sigma}\right)_{\alpha} \\
0 & 1-\alpha \\
0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\mu^{\mu \nu} & 0 \\
\hdashline 0 & 0
\end{array}\right)}
\end{aligned}
$$

So this is proputional to some P(Loreatz part 1, 0):

$$
\left.i\left(\eta^{\mu \alpha} \delta_{\beta}^{v}-\eta^{v \alpha} \delta_{\beta}^{\mu}\right)_{(p \sigma}\right)_{\alpha}
$$

But G the was we defined $P,(\rho \sigma)_{\alpha}=i \delta_{\alpha}^{\sigma}$, so

$$
\begin{aligned}
{\left[M^{\mu v}, \rho^{\sigma}\right]_{\beta} } & =-\eta^{\mu \alpha} \delta_{\beta}^{v} \delta_{\alpha}^{\sigma}+\eta^{v \alpha} \delta_{\rho}^{\mu} \delta_{\alpha}^{\sigma} \\
& =i \eta^{\mu \sigma}\left(i \delta_{\beta}^{v}\right)-i \eta^{v \sigma}\left(i \delta_{b}^{\mu}\right) \\
{\left[M^{\mu v}, \rho^{\sigma}\right] } & =i\left(\eta^{\mu \sigma} p^{v}-\eta^{v \sigma} p^{\mu}\right)
\end{aligned}
$$

We now have the complete commutation relations for the Lie algebra of the Poincare group.

$$
\begin{aligned}
& {\left[\mu^{\mu \nu}, M^{\nu \sigma}\right]=-i\left(\eta^{\mu \rho} \mu^{v \sigma}-\eta^{\mu \sigma} \mu^{v \rho}+\eta^{v \sigma} \mu^{\mu \rho}-\eta^{v \rho} \mu^{\mu \sigma}\right)} \\
& {\left[\mu^{\mu v}, \rho^{\sigma}\right]=i\left(\eta^{\mu \sigma} p^{v}-\eta^{v \sigma} p^{\mu}\right)} \\
& {\left[\rho^{\mu}, \rho^{v}\right]=0}
\end{aligned}
$$

Casimir operators
Now that we have the algebra, what can we do with it?
If we find an object that commenter with all generators, a pleven from math tells us it must be proportional to the idutrity operator on any irreducible representation: this is called a Casimir operator.

Irreducible \Leftrightarrow cant write as block-diagonal (Ike

$$
\left(\begin{array}{c:c}
R_{1} & 0 \\
\hdashline 0 & R_{2}
\end{array}\right)
$$

Here's one such operator: $p^{2} \equiv \rho^{m} P_{m}$
Proof: $\left[p^{2}, p \sigma\right]=0$ since all ρ^{\prime} 's commute

$$
\begin{aligned}
& {\left[P^{2}, M^{\rho \sigma}\right]=P^{\mu}\left[P_{m}, M^{\rho \sigma}\right]+\left[\rho^{\mu}, M^{\rho \sigma}\right] P_{\mu}} \\
& \text { (using }[A B, C]=A[B, C]+[A, C] B) \\
& =p^{\mu}\left(-i \delta_{\mu}^{\rho} p^{\sigma}+i \delta_{\mu}^{\sigma} p^{\rho}\right)+\left(-i \eta^{\mu \rho} p^{\sigma}+i \eta^{\mu \sigma} p^{\rho}\right) p_{\mu} \\
& =-i p^{\rho} \rho^{\sigma}+i p^{\sigma} \rho^{\rho}-i p^{\rho} \rho^{\sigma}+i p^{\sigma} \rho^{\rho} \\
& \text { P's comate, so each term cancels } \\
& =0
\end{aligned}
$$

$\Rightarrow P^{2}$ is a constant times the identity. Let's call the constant m^{2} : we will identify it with the physical squared mass of a particle.

The Poincare algebra has a second Casimir, but it's a bit trickier,
Let's define $W_{\mu}=-\frac{1}{2} \epsilon_{\text {nv eg }} M^{v \rho} \rho^{\sigma}$ (Pane (i-tabaaki psendovector)
$\epsilon_{\text {mvp }}$ is the totally antibaneretic tensor win $\epsilon_{0123}=-1$

First, observe that
$W_{\mu} P^{\mu}=-\frac{1}{2} \epsilon_{\mu v \rho \sigma} M^{v \rho} p^{\sigma} P^{\mu}=0$ since $p^{0} p^{\mu}$ is symmetric but
$t_{\text {apo }}$ is antisymmetric in σ, μ
Let's apply a Lorentz trash formation such that $p^{r}=(m, 0,0,0)$.
Then $W_{i}=-\frac{1}{2} \epsilon_{i j k O} M^{j k} p^{0}=m J_{i}$ whee J_{i} is the Loratz senator For rotations
Furthermore, $W_{m} p^{\mu}=0 \Rightarrow W_{0} p_{0}-\vec{w} \cdot \vec{p} \Rightarrow w_{0}=\frac{\vec{w} \cdot \vec{p}}{p_{0}}=0$,
So $W_{\mu}=(0, m \vec{j})$
$W^{2} \equiv W_{m} W^{\mu}=-n^{2} \vec{j} \cdot \vec{\jmath} \longleftarrow$ related to total spin J^{2}
Note: this only works if $n>0$!! will come back to $n=0$.
Claim: W^{2} commuter with all P^{m} and $M^{\mu v}$
To show this, first compute $\left[w_{\mu}, p^{\nu}\right]$ and $\left[w_{\mu}, \mu^{p o}\right]$

$$
\begin{aligned}
& \text { Then }\left[w^{2}, p^{v}\right]=w^{\mu}\left[w_{r}, p^{v}\right]+\left[w^{\mu}, p^{v}\right] w_{r}, \text { etc. } \\
& \begin{aligned}
{\left[w_{r}, p^{v}\right] } & =-\frac{1}{2} \epsilon_{\mu \alpha \beta r}\left[M^{\alpha \beta} p^{v}, p^{v}\right] \\
& =-\frac{1}{2} \epsilon_{\mu \alpha \beta r}\left(M^{\alpha \beta}\left[p^{v} / p^{v}\right]+\left[M^{\alpha \beta}, p^{v}\right] p^{v}\right) \\
& =-\frac{1}{2} \epsilon_{\mu \alpha \beta r}(i)\left(\eta^{\alpha v} p^{\beta}-\eta^{\beta v} p^{\alpha}\right) p^{v}
\end{aligned}
\end{aligned}
$$

But $p^{3} p^{r}$ is symmetric, so \in symbol kills it: $\left[w_{m}, p^{v}\right]=0$
Con also show $\left[w_{\mu}, M^{\rho \sigma}\right]=i\left(\delta_{\mu}^{\sigma} w^{\rho}-\delta_{\mu}^{\rho} w^{\sigma}\right) \quad(H W)$
and hare $\left[w^{2}, m^{p o}\right]=0$

