Classical vector solutions
Gauge-fixed Maxwell equetires.: $\square A_{\mu}=0, \partial^{\mu} A_{\mu}=0$
A guin, look for Solutions $A_{\mu}=\epsilon_{\mu}(p) e^{-i p x}$. We did this in week 4 : in a frame where $P^{\mu}=(E, 0,0, E)$, we have

$$
\epsilon_{\mu}^{(1)}=(0,1,0,0), \epsilon_{\mu}^{(2)}=(0,0,1,0), \epsilon_{\mu}^{f}=(1,0,0,1)
$$

Recall $\epsilon_{2}{ }^{+}$is ruphysical because it has zero norm. However, we seed to include it because $\epsilon_{\mu}^{(1)}{ }^{\prime \prime}$ mix wind it under a Lorentz trurformation. Explicith, let $\Lambda_{v}^{\mu}=\left(\begin{array}{cccc}3 / 2 & 1 & 0 & -1 / 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 / 2 & 1 & 0 & 1 / 2\end{array}\right)$. Can check $\eta \Lambda^{\top} \eta n=\mathbb{1}$, also $\Lambda^{m} \cup p^{\nu}=p^{\mu}$, so Λ preserves p^{μ}. However, $\Lambda_{v}^{r} \epsilon_{\mu}^{(1)}=(1,1,0,1)=\epsilon_{v}^{(1)}+\epsilon_{v}^{*}$, so Lorentz trmstormations can generate the unphasical polarization.
But it turns out that in QED, all amplitudes $M^{m}(p)$ involving an external photon with momentum P^{M} sadists $P_{M} M^{M}=0$. This is me ward ilefity, and because $\epsilon_{\mu}{ }^{*} \propto \rho^{\mu}$, this unphysical polarization doesn't contribute to any observable quantity. (More on (his later!)
Anabyous to spinors, we con compute inner and outer products:

$$
\begin{aligned}
& \epsilon_{\mu}^{(i)} \epsilon^{\mu(j)}=-\delta^{i j}, i=1,2 \\
& \sum_{i=1}^{2} \epsilon^{\mu(i) \theta} \epsilon^{v(i)}=\left(\begin{array}{llll}
0 & & & \\
& 1 & & \\
& & 0 & \\
& & & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1 \\
& & \\
& &
\end{array}\right)=-g^{\mu \nu}+\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & \\
& & -1
\end{array}\right) \\
& =-q^{\mu \nu}+\frac{p^{\mu} \bar{p}^{v}+\rho^{\prime} \bar{\rho}^{\mu}}{p \cdot \bar{p}}
\end{aligned}
$$

where $\bar{\rho}=(E, 0,0,-E)$. But by the agumuts above s the $\rho^{\text {re }}$ will always contract to zero, so we con say $\sum_{i=1}^{2} \epsilon^{m(i) p} \epsilon^{v(i)} \longrightarrow-g^{m v} \quad$ (again, sum over spins gives a matrix)

Feynman rules

$$
\mathcal{L}_{a E D}=\sum_{f=1}^{3} i \underbrace{i \bar{\psi}_{f} \gamma \psi_{f}-m_{f} \bar{\psi}_{f} \bar{\psi}_{f}-\frac{1}{4} F_{m v} F^{w v}}_{\begin{array}{c}
\text { Quadratic terms: } \\
\text { external lines }
\end{array}}-\underbrace{e \bar{\psi}_{f} A_{\mu} \gamma^{\mu} \psi_{f}}_{\begin{array}{c}
\text { interaction tens: } \\
\text { vertices }
\end{array}}
$$

Recipe for constructing amplitudes in QFT using a perturbative expansion in e (fulljustification for his in QFT class, fo QED, $e \approx 0.3$ so we expect this to work)
Vertex: $i \times$ coefficient $=-i e \gamma^{\mu} \quad$ Dm
External vectorsi: $\epsilon_{\mu}(p)$ for ingoing
$\epsilon_{m}^{*}(\rho)$ for outgoing
External fermions: $u^{s}(p)$ for incoming e^{-}
$\bar{u}^{s}(p)$ for outgoing e^{-}
\longrightarrow
$\bar{v}(p)$ for incoming e^{+}
$v(p)$ for outgoing e^{+}
Internal lines. "reciprocal of quadratic term" plus some factors of;
For fermions, Dirac equation is $(p-m) \psi=0$, so fermion propagatoris " $\frac{i}{p-n}$ ". This strict spacing doesn't make sense because we are dividing by a matrix, but we can manipulate it a bit using re defining relationship of be γ matrices, $\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv \gamma^{\nu} \gamma^{v}+\gamma^{v} \gamma^{\mu}=29^{m v}$
Note $(p+m)(p-m)=p p-n^{2}=\frac{1}{2}\left(p_{\mu} p_{\nu} \gamma^{m} r^{v}+p_{v} p_{\mu} \gamma^{\nu} \gamma^{r}\right)-n^{2}=p^{2}-m^{2}$ $\Rightarrow \frac{i}{\phi-m}=\frac{i(\phi+m)}{p^{2}-m^{2}}$ (4×4 matrix in spinor space Similarly for vectors, $\square A_{\mu}=0 \Rightarrow$ propagator is $\frac{-i "}{D}=\frac{-i g_{n v}}{p^{2}}$

Lefts construct the Feynman diagram for the lowest-order contribution to $e^{+} e^{-} \longrightarrow \mu^{+} \mu^{-}$

Terminology:
external states are "on-shel"" internal lines are "virtual particles"

$$
\left[\bar{v}_{s_{2}}\left(p_{2}\right)\left(-i e \gamma^{\mu}\right) u_{\varphi_{1}}\left(p_{1}\right)\right]\left(\frac{-i g_{m v}}{\left(p_{1}+p_{2}\right)^{2}}\right)\left[\bar{u}_{s_{3}}\left(p_{3}\right)\left(-i e \gamma^{v}\right) v_{s_{4}}\left(p_{4}\right)\right]
$$

Several hings to note:

- terms in brackets are Lorentz 4-vectors but all spine indices have been contracted. Mnemonic: work backwoods along Fermion arrows.
- Momentum conservation enforced at each vertex: $p_{1}+p_{2}$ flour into photon propagator, and $t h$ is is equal to $\rho_{3}+p_{4}$
- The final answer is a number, which me call i μ (i is convectional).

Before we calculate M, let's relate it to physical observables.

Cross sections
Parameterize interaction strength using something with units of area
 number of scattered particles proportional to area of scattering target

If we have two colliding beams with cross-sectional area A ard lest l, Scattern, rate $=\frac{\text { events }}{\text { time }}=\cap_{A} \wedge B A l\left|v_{A}-v_{B}\right| \sigma \equiv \angle \sigma$
\mathcal{L} is the luminosity and parametrizes the flux of incoming particles.
σ is he scattering cross section which parareterizes the interaction strap, th.
Fermi') Golden Rule relates σ to M :

In more detail:
\Rightarrow integrate over all momenta of find-state particles, weighted by momentur-conserving delta function

Recipe for computing cross sections:

- Write dom Feynman diagram
- Choose spins for external states, evaluate $|\mu|^{2}$
- Integrate over phase space to get σ, or integrate over part of phase space to get a differential cross section $\frac{d \sigma}{d x}$, Which gives a distribution in the variables) x.
In particular, we wat to understand $\frac{d \sigma_{e_{\text {er }} \rightarrow n^{+}-} \text {- where } \theta_{c m}}{d \theta_{c m}}$ is the angle between the outgoing μ^{-}and the incoming e^{-}in he center of momentum frame where $\vec{p}_{1}+\vec{p}_{2}=0$.

Back to evaluating matrix element?

$$
i \mu=\left[\bar{v}_{s_{L}}\left(p_{2}\right)\left(-i e \gamma^{\mu}\right) u_{s_{1}}\left(p_{1}\right)\right]\left(\frac{-i g_{m v}}{\left(p_{1}+p_{2}\right)^{2}}\right)\left[\bar{u}_{s_{3}}\left(p_{3}\right)\left(-i e \gamma^{v}\right) v_{s_{4}}\left(p_{4}\right)\right]
$$

First, need to specify spins. We will assume the initial e^{-}add e^{+} beam, ore mpolarized, so we will average over initial spins.
Also assure detectors are blind to particle spins, so sum over final spins, Later me will see what happen with polarized cross sections.

Summing, over spins actually simplifies the computation. Square first:

> focus on this term first
$\left[\bar{v} r^{\rho} u\right]^{+}=u^{+}\left(V^{\rho}\right)^{+}\left(r^{0}\right)^{+} v . \quad$ Recall $r^{0}=\left(\begin{array}{cc}0 & \mathbb{1} \\ \mathbb{1} & 0\end{array}\right)$, so $r^{0}=\left(r^{0}\right)^{r}$. So for $\rho=0$,
$\left[\bar{v} \gamma^{0} u\right]^{+}=u^{+} \gamma^{0} \gamma^{0} v=\bar{u} \gamma^{0} v$. For $\rho=1,2,3,\left(\gamma^{\rho}\right)^{+}=-\gamma^{\rho}$, and

$$
\begin{aligned}
& -r^{\rho} \gamma^{o}=+\gamma^{\circ} \gamma^{\rho}+2 g^{o \rho}=+\gamma^{\circ} \gamma^{\rho} \text {, so } \\
& {\left[\bar{v} \gamma^{\rho} u\right]^{+}=u^{+} \gamma^{\circ} \gamma^{\rho} v=\bar{u} \gamma^{\rho} v .}
\end{aligned}
$$

So the Arsis two terms in brackets are (restoring spinet indices):

$$
\bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha} Y_{\alpha \beta}^{\mu} u_{c_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{\rho_{1}}\left(p_{1}\right)_{\gamma} Y_{r \delta}^{\rho} v_{s_{2}}\left(p_{2}\right)_{\delta}
$$

Now average our s_{1}, and s_{2}. Once we write the indices explicit ls, we can cearrase terms at will:

$$
\begin{aligned}
& \sum_{s_{1}} u_{c_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{s_{1}}\left(p_{1}\right)_{r}=\left(p_{1}+m_{c}\right)_{\beta \gamma} \\
& \sum_{s_{2}} v_{s_{2}}\left(p_{2}\right) \delta \bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha}=\left(p_{2}-m_{l}\right)_{\delta_{\alpha}} \\
& \Rightarrow \frac{1}{4} \sum_{\varphi_{1}, s_{2}} \bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha} Y_{\alpha \beta}^{\mu} u_{r_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{\varphi_{1}}\left(p_{1}\right)_{\gamma} \gamma_{r \sigma}^{\rho} v_{s_{2}}\left(p_{2}\right)_{\delta}=\frac{1}{4}\left(p_{2}-n_{c}\right)_{\delta \alpha} \gamma_{\alpha \beta}^{\mu}\left(p_{1}+m_{c}\right)_{\beta r} V_{r \sigma}^{\rho} \\
&=\frac{1}{4} T r\left[\left(p_{2}-m_{c}\right) \gamma^{m}\left(p_{1}+m_{c}\right) V^{\rho}\right]
\end{aligned}
$$

This might not look like much of an improvement, but there are a number of very useful identities involving traces of r matrices:

$$
\begin{aligned}
& \operatorname{Tr}\left(\text { odd } t \text { of } \gamma_{s}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{v}\right)=4 \eta^{m v} \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{v} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(\eta^{\mu v} \eta^{p \sigma}-\eta^{m p} \eta^{v \sigma}+\eta^{m \sigma} \eta^{v \rho}\right)
\end{aligned}
$$

Using, te florist identity, only two terms survive:

$$
\begin{aligned}
& \operatorname{Tr}\left(-m_{e}^{2} r^{m} r^{\rho}\right)=-4 m_{c}^{2} \eta^{m p} \\
& \operatorname{Tr}\left(q_{2} r^{m} p_{1} r^{\rho}\right)=4\left(p_{2}^{m} p_{1}^{\rho}-\left(p_{1} \cdot p_{2}\right) \eta^{m p}+p_{2}^{\rho} p_{1}^{m}\right)
\end{aligned}
$$

Notice hat all be Y matrices have disappeared! Analogous manipulations on the p_{3}, p_{4} term ben give

The experimat we ore interested in operates at energies $E \gg m_{e}, m_{m}$. We assume all Me dot products ac $O\left(E^{2}\right)$ and drop he mass terms:

$$
\langle | M\left\rangle^{2}=\frac{8 e^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left(\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{4}\right)+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)\right)\right.
$$

This is a Loratz-invariant number. Now, specify a reference frame:

$$
\begin{aligned}
& p_{1}=\frac{E}{2}(1,0,0,1) \\
& p_{2}=\frac{E}{2}(1,0,0,-1) \\
& p_{3}=\frac{E}{2}(1, \sin \theta, 0, \cos \theta) \\
& p_{4}=\frac{E}{2}(1,-\sin \theta, 0,-\cos \theta)
\end{aligned}
$$

$$
\}\left(p_{1}+p_{2}\right)^{2}=E^{2},
$$

So $p_{1} \cdot p_{3}=\frac{E^{2}}{4}(1-\cos \theta), p_{1} \cdot p_{4}=\frac{E^{2}}{4}(1+\cos \theta), p_{2} \cdot p_{3}=\frac{E^{2}}{4}(1+\cos \theta), p_{2} \cdot p_{4}=\frac{E^{2}}{4}(1-\cos \theta)$

$$
\left.\left.\langle | m\right|^{2}\right\rangle=\frac{e^{4}}{2}\left((1+\cos \theta)^{2}+(1-\cos \theta)^{2}\right)=e^{4}\left(1+\cos ^{2} \theta\right)
$$

why 50 simple after all that work? angular momentum conservation

$$
\begin{aligned}
& \left.-2\left(p_{3} \cdot p_{4}\right)\left(p_{1} \cdot p_{2}-m_{c}^{2}\right)+4\left(p_{1} \cdot p_{2}-m_{c}^{2}\right)\left(p_{3} \cdot p_{4}-m_{m}^{2}\right)\right)
\end{aligned}
$$

