Spin -0

Let's make these considerations concrete by considering a specific Lagrangian for a collection of scalar fields,
$\Phi=\binom{\phi}{\varphi} \equiv \frac{1}{\sqrt{2}}\binom{\phi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}} \quad$ where $\phi_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}$ are real

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

Claim. this Lagrangian describes 4 massive, relativistic scalar frecds invariant under the following symmetries:

- $\Phi(x) \rightarrow \Phi\left(\Lambda^{-1}(x-a)\right) \quad$ (Poincorí)
- $\Phi(x) \rightarrow e^{i \alpha \alpha} \Phi(x) \quad(u(1))$
- $\Phi(x) \rightarrow e^{i \alpha^{\alpha} \sigma^{2} / 2} \Phi(x) \quad(\operatorname{Su}(2))$

First let's expand out \mathscr{L} just to see there is nothing mysterious in the notation:

$$
\begin{aligned}
& L=\frac{1}{2}\left(\begin{array}{lll}
\partial_{m} \varphi_{1}-i \partial_{m} \varphi_{2} & \partial_{m} \varphi_{1}-i \partial_{\mu} \varphi_{2}
\end{array}\right)\binom{\partial^{n} \varphi_{1}+i \partial^{\wedge} \varphi_{2}}{\partial^{\mu} \varphi_{1}+i \partial^{n} \varphi_{2}}-\frac{n^{2}}{2}\left(\begin{array}{ll}
\varphi_{1}-i \varphi_{2} & \varphi_{1}-i \varphi_{2}
\end{array}\right)\binom{\varphi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}}+\ldots \\
& \left.=\frac{1}{2}\left(\partial_{m} \varphi_{1}\right)\left(\partial^{2} \phi_{1}\right)+\frac{1}{2}\left(\partial_{1} \phi_{2}\right)\left(\partial^{2} \phi^{2}\right)+[\varphi \rightarrow \varphi]\right] \text { these terms ore } \\
& -\frac{n^{2}}{2} \phi_{1}^{2}-\frac{n^{2}}{2} \phi_{2}^{2}+[\phi \rightarrow \varphi] \\
& \text { quadratic in the fields, } \\
& \text { so will five free-patick } \\
& \text { equations of motion }
\end{aligned}
$$

+ (terms proportional to λ)

To find equation of notion, use Euler-Lagrange equation:
$\partial_{\mu} \frac{\partial \alpha}{\partial\left(\partial_{\mu} \psi_{1}\right)}-\frac{\partial \alpha}{\partial \phi_{1}}=0 \quad$ (and similar for $\left.\phi_{L}, \varphi_{1}, \varphi_{2}\right)$
(4-dimensional generalization of $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0$ from classical mechanics)
For quadratic terms only,

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial\left(\partial m \psi_{1}\right)}=\frac{\partial}{\partial\left(\partial \partial_{1} \phi_{1}\right.}\left[\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \phi_{1} \partial_{\rho} \psi_{1}\right]=\frac{1}{2} \eta^{\alpha \theta}\left(\delta_{\alpha}^{\mu} \partial_{\beta} \phi_{1}+\delta_{\beta}^{\mu} \partial_{\alpha} \phi_{1}\right) \\
&=\partial^{\mu} \phi_{1} \\
& \frac{\partial \alpha}{\partial \phi_{1}}=-n^{2} \phi_{1} \\
& \Rightarrow \partial_{\mu}\left(\partial^{\mu} \phi_{1}\right)-\left(-m^{2} \phi_{1}\right)=0 \\
&\left(\partial_{\mu} \partial^{\mu}+n^{2}\right) \phi_{1}=0 \text { Klein-Gordon equation }
\end{aligned}
$$

Get idatical equations for $\phi_{2}, \varphi_{1}, \varphi_{2}$. not a surprise, since they appear symorticall, in \mathcal{L} (more on this shortly)
Can succinctly write all 4 equations by treating I, \mathbb{I}^{+}as independat fields:

$$
\frac{\partial ん}{\partial\left(\partial_{\mu} \Phi\right)}=\partial_{m} \Phi^{+}, \quad \frac{\partial \swarrow}{\partial \Phi}=-m^{2} \mathbb{\Phi}^{+}
$$

$\Rightarrow\left(\partial_{n} \partial^{n}+m^{2}\right) \Phi^{+}=0$, Sane for Φ by taking Euler-Lagrange of $\underline{\underline{I}}^{+}$
Try a solution $\Phi(x)=e^{i k m^{n}}\binom{a}{b}$;

$$
\left(\left(i k_{m}\right)\left(i k^{\mu}\right)+m^{2}\right)\binom{a}{b}=\binom{0}{0}
$$

This guess solves the $k-6$ eqn. for any constant 0,6 aslong as $k_{m} k^{n}=m^{2}$, the correct eneny-momation relation for a relativistic massive particle.

Now let's consider the symmetries of α.

- Poincare. If we transform coordinates $x^{\mu} \rightarrow \Lambda_{v}^{\mu} x^{v}+a^{\mu}$, I should take the save value in both coordinate systems.
So we should shift re argument of Φ;

$$
\Phi \longrightarrow \Phi\left(\Lambda^{-1}(x-a)\right)
$$

(II itself doesn't get a Lorentz transformation matrix because it has spin 0) This is just the generalization of the familiar fact that to translate a function by \vec{a}, you shift $f \rightarrow f(\vec{x}-\vec{a})$. We are implicitly considering active transformations, where coordinates stan fixed and Files transform, which is just a convention.

$$
\begin{aligned}
\mathcal{L}\left[\Phi(x), \partial_{\mu} \Phi(x)\right] \rightarrow & \eta^{\mu v} \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{V} \Phi\left(\Lambda^{-1}(x-a)\right)<\begin{array}{c}
\text { derivative hits } \\
\text { shitted asumeat }
\end{array} \\
& -m^{2} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right) \\
& -\frac{\lambda}{4}\left(\Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right)\right)^{2}\left\{\begin{array}{l}
\text { nothing happens o the } \\
\text { than shifted armet }
\end{array}\right.
\end{aligned}
$$

Look at derivative term;

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right)=\left(\Lambda^{-1}\right)_{\mu}^{\rho} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \\
& \Rightarrow \eta^{\sim v} \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\nu} \Phi\left(\Lambda^{-1}(x-a)\right)=\underbrace{\eta \nu}\left(\Lambda^{-1}\right)_{\mu}^{\mu}\left(\Lambda^{-1}\right)_{v}^{\alpha} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \Phi\left(\Lambda^{-1}(x-a)\right) \\
& =\eta^{p o r} \text { by def. of } \\
& \text { beret soup } \\
& =\eta^{10} \partial \rho \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \mathscr{\Psi}\left(\pi^{-1}(x-a)\right) \\
& \Rightarrow \mathcal{L}\left[\Phi(x), \partial_{m} \Phi(x)\right] \rightarrow \mathcal{L}\left[\Phi\left(n^{-1}(x-a)\right), \partial_{n} \Phi\left(n^{-1}(x-a)\right)\right]
\end{aligned}
$$

Lagmsim stays exactly the save apart from a shift in coordinates.
So, if we derive equations of native from $\delta\left(\int d^{4} \times L(\Phi(x))\right)=0$, they will take the same for after a lorentz transformation.

The index notation is a ponethl way to encode Lorentz invariance: if a Lagrangian has all indices contracted, it's invariant under Lorentz transtornctions.
egg. $\partial_{\mu} \Phi \partial_{V} \Phi$ is not Lorentz-incoriant, but $\partial_{\mu} \Phi \partial^{\mu} \Phi$ is.

- U(1) sumnetri: 正 $\rightarrow e^{i a \alpha} \Phi$. We also require $\Phi^{+} \rightarrow e^{-i a \alpha} \Phi^{+}$ So that $\Phi^{+}=\left(\Phi^{*}\right)^{T}$ before and after transto-nation
\Longrightarrow any terms that have on equal number of Φ and Φ^{+}ore invariant, as long as α is a constant.

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+} \partial_{v} \Phi \longrightarrow\left(e^{-i q \alpha} \partial_{\mu} \Phi^{+}\right)\left(e^{i \theta / \alpha} \partial_{v} \Phi\right)=\partial_{\mu} \Phi^{+} \partial_{v} \Phi \\
& \left(\underline{\Phi}^{+} \Phi\right)^{2}=\left(e^{-i \varphi / \alpha \Phi^{+}} e^{i \varphi / \alpha \Phi}\right)^{2}=(\Phi+\Phi)^{2}, t_{L_{-}}
\end{aligned}
$$

Just like with Lorentz/Poincaré, we can consider in finitesimal troustomatios:

$$
e^{i Q \alpha}=1+i Q \alpha+\cdots \text {, so } \underline{\Phi} \rightarrow(1+i \alpha \alpha) \Phi \text { or } \delta \underline{\Phi}=i Q \alpha \Phi
$$

This is a convenient calculational trick, so let'r apply it

$$
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \Phi+\Phi^{+}(\delta \Phi)=\left(-i \alpha \alpha \Phi^{+}\right) \underline{\Phi}^{+} \underline{\Phi}^{+}(+i \alpha \alpha \underline{\Phi})=0
$$

Re "variation operation" δ
distributes over products
if $\delta(\cdots)=0$, that term is invariant under the symmetry.

- Su(2) Symmetry: I $\rightarrow e^{i \alpha^{a} \sigma^{a} / 2}$ I. Recall he Pauli matrices:

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For real parameters $\alpha^{a}(a=1,2,1), \quad \frac{i \alpha^{a} \sigma^{a}}{2}=\frac{i}{2}\left(\begin{array}{cc}\alpha^{3} & \alpha^{\prime}-i \alpha^{2} \\ \alpha^{1}+i \alpha 2 & -\alpha^{3}\end{array}\right) \equiv i X$

$$
M \equiv e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\cdots
$$

If X is Hermitian, M is Unitary (HW 2)

Suppose we diagonalize M so set $M=\pi \lambda_{i}$ (product of eigenvalues

$$
\log (\operatorname{det} M)=\log \left(\Pi \lambda_{i}\right)=\sum \log \lambda_{i}=\operatorname{Tr}(\log n)
$$

But Tr and dit we both basis-indepeleat so the hold for any M, in particular $M=e^{i x}$
If $\operatorname{Tr}(x)=0$, hen $\operatorname{Tr}(\log M)=\operatorname{Tr}(i x)=0$, so $\log (\operatorname{det} n)=0$, $\operatorname{det} M=1$
\Rightarrow traceless, Hermitian x exponeatiate to unitary, deternimet -1 M.

Here, Pauli matrices on 2×2, so bey exporentirate to the group su(2) (indeed, they are the hie algebra of Such), ie. The set of infinitesimal transformations)

Back to Lagrangian: again, any terms with an equal number of Φ and Φ^{+}are inverimet.
Proof: $\delta \Phi=\frac{i \alpha^{a} \sigma^{a}}{2} \Phi, \delta \Phi^{+}=\left(\frac{i \alpha^{a} \sigma^{a}}{2} \mathbb{E}\right)^{+}=\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right)$
(σ^{a} are Hermitian)

$$
\begin{aligned}
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \Phi+\Phi^{+}(\delta \Phi) & =\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right) \Phi+\Phi^{+}\left(\frac{i \alpha^{a} \sigma^{2}}{2}\right) \Phi \\
& =\Phi^{+}\left(\frac{-i \alpha^{2} \sigma^{a}+i \alpha a / \sigma^{\alpha}}{2}\right) \Phi \\
& =0
\end{aligned}
$$

What does $\delta \mathbb{I}$ do to be fuels in 区? Write out some examples:

$$
\begin{aligned}
& \alpha=(1,0,0) \quad \delta \mathbb{I}=\frac{i \sigma^{\prime}}{2} \mathbb{E}=\left(\begin{array}{cc}
0 & \frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)\binom{\phi_{1}+i \phi_{2}}{\varphi_{1}+i \varphi_{2}}=\binom{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}}{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}} \\
& \text { i, e, } \delta \phi_{1}=-\frac{\varphi_{2}}{2}, \delta \phi_{2}=\frac{i \varphi_{1}}{2}, \delta \varphi_{1}=-\frac{\phi_{2}}{2}, \delta \varphi_{2}=\frac{i \phi_{1}}{2}
\end{aligned}
$$

mixes fields among one ouster

We have now identified all the spacetime and globe((ie .constant) symmetries of \mathcal{L}. To wrap up, a little dimensional anabasis.:

In QFT, $\hbar=c=1$, so there is only one dimensionful quantity, which we typically taler as mass. Dimensions will be computed in powers of mas, and denoted $[\cdots]=d$
Ex.

$$
\left.\begin{array}{l}
{[m]=1} \\
{[E]=\left[m c^{2}\right]=[m]=1} \\
{[T]=\left[\frac{\hbar}{E}\right]=\left[E^{-1}\right]=-1} \\
{[L]=[C T]=[T]=-1}
\end{array}\right\} \begin{aligned}
& {\left[x^{m}\right]=-1} \\
& {\left[d^{4} x\right]=-4}
\end{aligned}
$$

Action S should be dimensionless in there wits:

$$
\begin{aligned}
{\left[\int d^{4} \times \mathcal{L}\right]=0 \Rightarrow } & {\left[d^{4} \times\right]+[\alpha]=0 } \\
& -4+[\alpha]=0 \\
& {[\alpha]=4 }
\end{aligned}
$$

The key, to understanding 90% of QFT in 4 spacetime dimension!
We saw that for a scalar field, a mas term can be written ns $\subset \rightarrow m^{2} \Phi^{+} \Phi$. So with $[m]=1$, we mast have $[\Phi]=1$ "contain:"
$\left[\partial_{m}\right]=\left[\frac{\partial}{\partial x^{m}}\right]=\left[\frac{1}{x^{m}}\right]=1$, so $\left[\partial_{\mu} \Phi\right]=2$ and the derivative ("kinetic") term also has diversion 4: [$\left.\left.\eta^{n v}\right)_{\mu} \Phi^{+} \partial_{v} \Phi\right]=4$. $\left[\left(\Psi^{+} \Phi\right)^{2}\right]=4$, but what about $\left(\Psi^{+}{ }^{+}\right)^{3}$? To put this in a Las asian must include a dimasionful constant $\left[\frac{1}{n^{2}}\right]=-2$ such hat $\frac{1}{\Lambda^{2}}(\text { It }+ \text { I })^{3}$ has diversion 4 .

