The Starland Model
We have classified spin-0 and spin-曹 fields by heir Lorutz ress and irtenal (gange) symnetries, trough which me infroduced spin-1 fields. Here are be fiects which comprise be Stanlarl Model:

Terminoloyy: Lf, $e_{R}{ }^{+}$are ceftlight-habled leftus
$Q_{f}, u_{R}{ }^{+} / d_{R}^{f}$ are leftright-harded quarks
$f=1,2,3$ are geecations ($t=1$ is electon, election nentrine, ws quat, doun quati, ar flaves $t=2$ is muon, muon rention, charm inve, stance pari; $f=2$ is tan, tan reutrino, top quacts bottom quark)
His the Hings field
$U(1)_{y}$ is hyperchare
Su(2) (soretimes su(2)) is the weak force, and onls acts on left-handed fermions (and the Hipss)
su(3) (soretimes su(3)c) is color, or the strons force
Notation. Angtring with a \checkmark mer su(2) is a 2-componat rector of fields which trasforms with $e^{i \alpha^{\wedge} T^{a}}$, like I we sav carlier (in fact, it is H). Simildy, be querks are 3-componat vectors trastoming with 3×3 mitous matices $u_{R}=\left(\begin{array}{l}u_{R}^{?} \\ u_{2} \\ u_{R}^{k}\end{array}\right)$ ("red", "rren", "bl-e"), so Q is actually, a $3 \times 2=6$-copponat fucl.

The Standard Model consists of Calmost) all terms we can write down up to total dimension f which ae invariant under lorentz and local $\operatorname{su}(3) \times \operatorname{su}(2) \times$ U(1)y symmetry. (You will see the remaining term in HW 3)

Easy stuff first,' $\alpha^{\text {su(3) }} \&^{\text {su(2) }} \alpha^{u(1) y}$

$$
\begin{aligned}
& \mathcal{L}_{k i n}=\left|D_{\mu} H\right|^{2}-\frac{1}{4} G_{\mu v}^{a} G^{\mu v a}-\frac{1}{4} W_{\mu v}{ }^{a} W^{\sim v a}-\frac{1}{4} B_{\mu \nu} B^{\mu v} \\
& +\sum_{f=1}^{3}\left\{i L^{+} \bar{f}^{-} D_{\mu} L_{f}+i Q_{f}^{+} \bar{\sigma}^{-} D_{m} Q_{f}+i e_{R}^{++} \sigma^{m} D_{\mu} e_{R}^{+}+i u_{R}^{f+} \sigma^{\sim} D_{\mu} u_{R}^{+}+i d_{R}^{f+} \sigma^{-} D_{\mu} d_{R}^{+}\right\} \\
& <_{\text {Hays }}=+\mathrm{M}^{2} H^{+} H-\lambda\left(H^{+} H\right)^{2} \text { (note mans tor has wrong sim! Will set to his (aterin the cone) }
\end{aligned}
$$

Since fermions have dimension $\frac{3}{2}$, a fermion-fermion-scaler tern (know as a Yukoun tern) has dimension 4. What such terns are allowed?

Consider L+Hek tern first:
SU(3): $L_{i}^{+} \rightarrow L_{i}, H \rightarrow H, e_{R}^{3} \rightarrow e_{R}^{j}$ (no trusformation, so trivially puverant)
Su(2): $L_{i}^{+} \rightarrow L_{i}^{+} u^{+}, H \rightarrow u H, e_{R}^{j} \rightarrow e_{R}$ for some $u \in \operatorname{su}(2)$, so

$$
L_{i}^{+}+H e_{R}^{j} \rightarrow L_{i}^{+}\left(u^{\Im} u\right) H e_{R}^{j}=L_{i}^{+} H e_{R}^{j}, \quad \text { invariant }
$$

U(1), : this group is Alelim, so as a shortest, can just count charges:

$$
\begin{aligned}
& +\frac{1}{2}+\frac{1}{2}-1=0 \\
& L_{i}^{+} H e_{R}^{j}
\end{aligned}
$$

So ever trough L_{i} and e_{R} triform differatly, It composites, making if invariant.
very similar story for second term. (an check su(3) ad such) yourself, $\begin{array}{ll}u(1)_{y}: & -\frac{1}{6}+\frac{1}{2}-\frac{1}{3}=0 \\ Q_{i}^{+} H d_{R}^{j}\end{array}$

One final trick and wire done! We can make an Su(2)-invaiat term without taking Hermitian conjugates.
You will show in HW 3 that $\epsilon^{a b} Q_{a} H_{b}$ is invariant under su(2).
So, defining $\tilde{H}=\epsilon^{a b} H_{b}^{A}=\binom{H_{2}^{A}}{-H_{1}^{A}}$, which has $Y=-\frac{1}{2}$, we con wite

$$
L_{y_{\text {nama }}} \partial-y_{i j}^{u} Q_{i}^{-\frac{1}{6}}+\frac{-\frac{1}{2}+\frac{2}{2}}{\tilde{H}} u_{R}^{j}=0
$$

That's it!

$$
\begin{aligned}
& \mathcal{L}_{\text {sm }}=\mathcal{L}_{\text {kinetic }}+\alpha_{y_{\text {nama }}}+\mathcal{L}_{\text {H:iys }} \\
& =\left|D_{m} H\right|^{2}-\frac{1}{4} G_{m v}^{a} G^{\sim v a}-\frac{1}{4} W_{m v}{ }^{a} W^{\sim v a}-\frac{1}{4} B_{m} B^{\mu v} \\
& +\sum_{f=1}^{3}\left\{i L_{f}^{+} \bar{\sigma}^{m} D_{\mu} L_{f}{ }^{-} i Q_{f}^{+} \bar{\sigma}^{m} D_{m} Q_{A}+i e_{R}^{++} \sigma^{m} D_{\mu} e_{R}^{+}+i u_{R}^{++} \sigma^{m} D_{\mu} u_{R}^{F}+i d_{R}^{\not+t} \sigma^{n} D_{\mu} d_{k}^{*}\right\} \\
& -Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}-Y_{i j}^{n} Q_{i}^{+} \tilde{H} u_{R}^{j}+\text { hic. } \\
& +n^{2} H^{+} H-\lambda\left(H^{+} H\right)^{2}
\end{aligned}
$$

The remaining II weeks of the corse will be devoted to the physical consequences of this Lagrangian.
To wrap up, a taste of the Highs mechanism." note that this Lagrazion has no fermion masses (it canit, since all le lett-and right-horled fermions have different $u(1)$ charges). But, if me set $H=\binom{0}{v}$ with v a constant, ben

$$
y_{11}^{e} L_{1}^{+} H e_{R}^{\prime} \rightarrow y_{11}^{e}\left(v_{L}^{+} e_{L}^{+}\right)\binom{0}{v} e_{R}=v y_{11}^{e} e_{L}^{+} e_{R}
$$

a mars term for he electron?
More on this, and how electromagnetism emerges from hypercharge, in the weeks to come...

