Game invariance and spin-1

Recall our scalar Lagrangian from last time:

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

We sam that $\delta \Phi=i Q \alpha \Phi$ was a symmetry. What if we let $\alpha=\alpha\left(x^{-}\right)$ depend on spacetime position? This is a local transformation because it's a different action at each point, in catrast to global which is the save evergulere.

The spacetime dependence doesn't affect the second and third terms, which remain invariant, but it does chare the first are:

$$
\begin{aligned}
\delta\left(\partial_{\mu} \Phi^{+} \partial^{\wedge} \tilde{\Psi}\right) & =\partial_{\mu} \delta \Phi^{+} \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(\delta \Phi) \\
& =\partial_{\mu}\left(-i Q \alpha(x) \Phi^{+}\right) \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(i Q \alpha(x) \Phi) \\
& =-i Q \partial_{\mu} \alpha \Phi^{+} \partial^{\mu} \Phi+i Q \partial^{\mu} \alpha \partial_{\mu} \Phi^{+} \Phi
\end{aligned}
$$

Not invariant anymore!
We con fix this with a trick: sump out all instances of ∂_{n} with

$$
D_{\mu} \equiv \partial_{\mu}-i Q A_{\mu}(x) \quad \text { (covariant derivative) }
$$

and define A_{μ} to have the teantormation rule $\delta A_{\mu}=\partial_{\mu} \alpha$
Then $\delta\left(D_{\mu} \mathbb{\Psi}\right)=\delta\left(\partial_{\mu} \mathbb{I}\right)-\delta\left(i \alpha A_{\mu} \mathbb{I}\right)$

$$
\begin{aligned}
& =\partial_{\mu}(i Q \alpha \Phi)-i \alpha \delta\left(A_{\mu}\right) \Phi-i Q A_{\mu} \delta \underline{\Phi} \\
& =i Q \alpha \partial_{\mu} \Phi+i Q \partial_{\mu} \alpha \Phi-i \alpha \partial_{\mu} \alpha \Phi+Q^{2} \alpha A_{\mu} \Phi \\
& =\left(-i Q \alpha \partial_{\mu} \Phi^{+}+Q^{2} \alpha A_{\mu} \Phi^{+}\right)\left(\partial^{\mu} \Phi-i \alpha A^{\mu} \Phi\right) \\
& +\left(\partial_{\mu} \Phi^{+}+i Q A_{\mu} \Phi^{+}\right)\left(i Q \alpha \partial^{\mu} \Phi+\alpha^{2} \alpha A^{n} \Phi\right) \\
& =0 \quad \text { (check this yourself!) }
\end{aligned}
$$

$$
\delta\left(D_{\mu} \Phi^{+} D^{\mu} \underline{I}\right)=\left(-i Q \alpha \partial_{\mu} \bar{\Phi}^{+}+Q^{2} \alpha A_{\mu} \Phi^{+}\right)\left(\partial^{\wedge} \Phi-i Q A^{\wedge} \Phi\right)
$$

Alternatively, can show that $D_{\mu} \Phi \rightarrow e^{i \alpha_{\alpha}(x)} D_{\mu} \Phi, s_{0}\left(D_{\mu} \Phi\right)^{+} D_{\mu} \Phi$ is invariant.

So, we con promote a global symurety $I \rightarrow e^{i<\alpha} \Phi$ to a cal Symmetry $\Phi \rightarrow e^{i ब \alpha(x)} \Phi$, at the cost of introducing another field A_{m} which has its own non-homogereous tronstornation rule $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha$.

Why in the world could we do this?

- Turns out this is the correct way to incorporate interactions with spine fields: Am will be the photon, and Q is the electric charge.
- In fact, this traatormatton rule tor An is required for a consistent, unitary theory of a massless spin-1 particle: invariance under this local transformation is known as gauge invariance.

Let's put I aside for now and just consider what form the Lagrangian for A_{m} must take.

- Lorentz invariance: A_{μ} is a Lorentz vector, so $A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{v}\left(\Lambda^{-1} x\right)$. So the "principle of contracted indices" holds: $A_{\mu} A^{\prime \prime}$ is Loretz-invariant, as is $\left(\partial_{\mu} A_{v}\right)\left(\partial^{\mu} A^{v}\right)$, eta.
- Gauge invariance: we want \mathcal{L} to be invariant under $A_{m} \rightarrow A_{\mu}+\partial_{n} \propto$. Try writing down a mass term:

$$
\begin{aligned}
\delta\left(\frac{1}{2} n^{2} A_{\mu} A^{m}\right) & =\frac{1}{2} n^{2}\left(\delta A_{m} A^{\mu}+A_{\mu} \delta A^{n}\right) \\
& =n^{2} \partial_{\mu} \times A^{\mu} \neq 0
\end{aligned}
$$

Surprise! A mas term is not allowed by gauge suraiance.
What about terms with derivatives? Something like $\partial_{m} A_{v}$ will pick up $\partial_{\mu} \partial_{v} \alpha$. Con cancel this with a comparsath, term $\partial_{v} \partial_{\mu} \alpha$, which comes from $\partial_{v} A_{m}$. This leads to $\mathcal{L}_{A}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{v} A_{\mu}\right)\left(\partial^{2} A^{\nu}-\partial^{\nu} A^{\sim}\right)$ convational Fro, field strengon tensor

With $A_{n}=(\phi, \vec{A})$, the electromagnetic potentials, you will find that \mathcal{L} is none other than Ne Maxwell Lagrangian, $\mathcal{K}_{E M}=\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)$.

But the photon has 2 polarizations, ie, 2 independent components of $A n$, which is a 4-vector. How do we get rid of the 2 extraneous components?

- Note that A^{0} has no time derivatives: $\partial_{0} A_{0}$ never appears in Laprassian, So its equation of motion doesnit involve time. Therefore A_{0} is not a propagating degree of freedom: this follows immediately from write> 〈[Fmv]. can solve for A^{2} in terms of \vec{A}.
- Choose a gauge, for example $\vec{\nabla} \cdot \vec{A}=0$. Solve for one componet if \vec{A} in terms of k other two, and whats left are he tho propagating degrees of freedom, whose equations of motion are $\square A^{(1,2)}=0$.

The competing is fairly straightfound as above, but not Lorentz invariance; under a lorentz transformation, A^{0} mixes with $\vec{A}, \vec{\nabla} \cdot \vec{A}=0$ is not preserved, etc.

Repeat the above analysis using unitary rep-esatations of the Lorentz group.

A 4 -vector A_{μ} must have some Hilbert space representation $\left|A_{\mu}\right\rangle$, So we con write a state $|\psi\rangle$ as a linear constination of the componats:

$$
|\psi\rangle=c_{0}\left|A_{0}\right\rangle+c_{1}\left|A_{1}\right\rangle+c_{2}\left|A_{2}\right\rangle+c_{1}\left|A_{3}\right\rangle
$$

This stalk must have positive norm:

$$
\left.\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}\right\rangle 0
$$

But if the components of An change under a Lorentz transtormetion, we can chase re norm, which is bad; the lorentz transformation entries are not unitary!

Alternatively, we could redefine the norm to be Lorentz-inveriant, $\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}-\left|c_{1}\right|^{2}$, $b_{n} t$ chis is not positive definite!
Solution in two steps: (1) use fields as the representation, which do have witary (infinife-dimessional) representations, and (2) project out the wrong-sign component. Since vectors live in the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation, which has $j=0$ and $j=1$ components, this is equivalent to projecting out the $j=0$ component, leaving $j=1$ as appropriate for spin-1.
mometum-depealat
Write A_{μ} in Fourier space, $A_{\mu}(x)=\int \frac{d^{4} \rho}{(2 \pi)^{4}} \epsilon_{\mu}(p) e^{i p \cdot x}$
A Lorene transformation will act on Pis field as

$$
A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{\mu}\left(\Lambda^{-1} x\right)=\int \frac{d^{4} \rho}{(2 \pi)^{4}} \underbrace{\Lambda_{\mu}^{v} \epsilon_{v}(p)}_{\substack{\text { polarization } \\ \text { vectors rotate }}} e^{i p \cdot\left(\Lambda^{-1} x\right)}
$$

How many linear independent polarization vector?
Equations of motion: (HW)

$$
\square A_{\mu}-\partial_{n}\left(\partial^{v} A_{v}\right)=0
$$

Choose a gauge such that $\partial^{v} A_{v}=0$. (can always do this: if $\partial^{v} A_{v}=X$, trike $A_{v} \rightarrow A_{v}+\partial_{v} \lambda, \partial^{v} A_{v} \rightarrow X-\partial^{2} \lambda$. Solve for λ to cancel X.)
\Rightarrow in Fowler space, $P^{2}=0$ and $p \cdot \epsilon=0$. This is an alseba'k constraint which is Lorentz-inumint, so it projects out spin- 0 as desired, Reduces for polarizations $\epsilon_{m}{ }^{0}=(1,0,0,0), \epsilon_{\mu}{ }^{\prime}=(0,1,0,0), \ldots$ to three. But we have one more gage transformation left! Con still have $A_{m}=\partial_{\mu} \lambda$ consistent with $\partial^{2} A_{\mu}=0$ if $\partial^{2} \lambda=0$. In this case, A_{μ} is gauge-equivalet to O (or pure gauge) and not physical. Indeed, consider $\lambda=e^{i p \cdot x}$; then $\partial^{2} \lambda=-p^{2} e^{i p-x}=0$ if $\rho^{2}=0$. So if $A_{\mu}=\partial_{\mu} \lambda=i \rho_{m} e^{i \rho \cdot x}$, then ϵ_{μ} is proportional to ρ_{m}; these "Forward" polarizations are unphysical.

We are Rus left with two independent polarization vectors: in a frame where $\rho_{\mu}=(E, 0,0, E)$, bey are

$$
\begin{aligned}
& \epsilon_{\mu}^{\prime}=(0,1,0,0) \quad\{\text { linear polarization } \\
& \epsilon_{\mu}^{2}=(0,0,1,0) \\
& \epsilon_{\mu}^{L}=\frac{1}{\sqrt{2}}(0,1,-i, 0) \quad \text { \} circular polarization } \\
& \epsilon_{\mu}^{R}=\frac{1}{\sqrt{2}}(0,1, i, 0) \quad
\end{aligned}
$$

In QFT, these polarization vectors represent physical states, so we con trite linear combinations of them:

$$
\begin{aligned}
& \text { es. }|\epsilon\rangle=C_{1}|1\rangle+C_{2}|2\rangle \\
& \langle\epsilon \mid \epsilon\rangle=\left|c_{1}\right|^{2}\langle 1 \mid 1\rangle+\left|c_{2}\right|^{2}\langle 212\rangle+c_{1}^{\infty} c_{2}\langle 1 \mid 2\rangle+c_{1} c_{2}{ }^{\infty}\langle 211\rangle \\
& -\left(\epsilon_{n}^{\prime}\right)^{s} \epsilon^{\prime n}=1 \\
& =0 \text { since } \epsilon_{\mu}^{\prime} \text { and } \epsilon_{\mu}^{2} \text { are } \\
& \text { orthogonal } \\
& \text { (define normwith minus sima so iris positive) } \\
& =\left|C_{1}\right|^{2}+\left|c_{2}\right|^{2}
\end{aligned}
$$

This inner product is Lorentz-insminat because the basis vectors Charge inter Lorentz, but not the coefficients! Moreover, gauge invrriarce let us get til of the states with non-poritive norm:

$$
\begin{aligned}
& \epsilon_{\mu}^{0}=(1,0,0,0)=\langle\langle 0 \mid 0\rangle=-1, \text { bad! } \\
& \left.\epsilon_{\mu}^{F}=(1,0,0,1)=\right\rangle\langle f \mid f\rangle=0, \text { bad! }
\end{aligned}
$$

At long last, our new Lagrangian is

$$
\alpha=\left|D_{m} \Phi\right|^{2}-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} F_{\mu v} F^{n v}
$$

Note: $\left[A_{\mu}\right]=\left[\partial_{m}\right]=1$ from covariant derivative, so $\left[F_{m} F^{n u}\right]=4$, as required.

