Discovery of the W / z and Highs
The predictions of electroweak symmetry breaking were confirmed in spectacular fashion with the discovers of the W and Z bosons at CERN in 1983, and the discover of the Higys boson in 2012. Today we will survey these processes, which took place at proton-proton colliders, and additionally examine the precision electroweak tests that can take place at electron-positron colliders. Throughout we will exploit the simplification g of the narrou-widon approximation to factorize production and decay:

$$
\sigma(\text { initial state } \rightarrow x \rightarrow \text { final state }) \approx \sigma \text { (initial state } \rightarrow x) \times \operatorname{Br}(x \rightarrow \text { tincestare })
$$

W production in pp collisions
From the W coupling to quarks, the following diagram exists:

$$
\begin{aligned}
& \begin{array}{l}
\text { (memenosic: } u \text {-type arrows gain, in to a vertex get } C K M^{B} \text { : } \\
\text { this will be important later) }
\end{array} \\
& \text { this will be important later) }
\end{aligned}
$$

As we saw when we discussed $Q C D$, we need to weight this matrix eleven by the parton distribution function of the proton, which counts quarks. At enemies $>100 \mathrm{GeV}$, the proton's quark content is most u and d value quarks, so this diagram suffices.
This is very similar to the $t \rightarrow 6 \mathrm{w}$ diagram ne computed last week. Indeed, all that charges is $V_{t b} \rightarrow V_{u d}$ and $a \bar{v}$ instead of $a \bar{u}$ spinor. But since ore ont difference is the sim of the quark mass term in the trace, and the terms proportional to m_{t} varistel, we can just borrow the result from last time, with a slight different pecfactor:

$$
\left.\left.\langle | M\right|^{2}\right\rangle=\rho_{\text {average over spins }} \frac{q^{2}}{12}\left|V_{u d}\right|^{2}\left(p_{u} \cdot p_{d}+\frac{2\left(p_{u} \cdot p_{w}\right)\left(p_{d} \cdot p_{w}\right)}{n_{w}}\right)
$$

and colors: 2×2 for spins, on b 3 colors since w doess't charge quark color
This tine, we have $p_{u}+p_{d}=p_{w}$. Defining $\left(p_{u}+p_{d}\right)^{2}=\hat{s}$, the dot products are

$$
\left.p_{u} \cdot p_{d}=\frac{\hat{\xi}}{2}, p_{u} \cdot p_{w}=p_{d} \cdot p_{w}=\frac{m_{u}{ }^{2}}{2} \text {, so }\left.\langle | m\right|^{2}\right\rangle=\frac{g^{2}}{12}\left|V_{n d}\right|^{2}\left(\frac{\hat{s}}{2}+\frac{m_{w}{ }^{2}}{2}\right)
$$

$\left.\sigma\left(u \bar{d} \rightarrow w^{+}\right)=\left.\frac{1}{2 \hat{s}} \int d \pi_{1}\langle | \mu\right|^{2}\right\rangle$ where

$$
\int d \pi_{1}=\int \frac{d^{3} p_{n}}{(2 \pi)^{3} 2 E_{w}}(2 \pi)^{+} \delta^{(4)}\left(p_{n}+p_{d}-p_{w}\right)=2 \pi \delta\left(\hat{s}-m_{w}^{2}\right)
$$

(aswive alluded to before, 1-particle phase space has one unresolved J-function) Thereto we can set $\hat{s}=m_{w}{ }^{2}$ in the matrix element, giving,

$$
\begin{aligned}
\sigma\left(u \bar{d} \rightarrow w^{+}\right) & =\frac{1}{1 \hat{\delta}} \not x \pi\left(\frac{g^{2}}{12}\left|v_{u d}\right|^{2}\left(m_{\tilde{w}}{ }^{*}\right)\right) \delta\left(\hat{s}-m_{n}^{2}\right) \\
& =\frac{\pi g^{2}}{12}\left|V_{u d}\right|^{2} \delta\left(\hat{s}-m_{w}{ }^{2}\right) \\
& =\frac{\pi^{2} \alpha_{w}}{3}\left|v_{u a}\right|^{2} \delta\left(\hat{s}-m_{w}^{2}\right) \text { where } \alpha_{\omega}=\frac{9^{2}}{4 \pi} \text { (weak "Fine-structure constant") }
\end{aligned}
$$

Integrating over POF's,

$$
\begin{aligned}
& \text { Integrating over POF } \text {, } \\
& \sigma\left(p \bar{p} \rightarrow w^{+}\right)=\int d x_{1} d x_{2}\left[f_{u}\left(x_{1}\right) F_{\bar{d}}\left(x_{2}\right) \sigma\left(u\left(x_{1} p_{1}\right) \bar{d}\left(x_{2} p_{2}\right) \rightarrow w^{+}\right)+1 \Longleftrightarrow 2\right]
\end{aligned}
$$

when P_{1} and P_{2} are the initial p / \bar{p} 4-momenta:
$\left.P_{1}=\left(\frac{\sqrt{s}}{2}, 0,0, \frac{\sqrt{s}}{2}\right), P_{2}=\left(\frac{\sqrt{s}}{2}, 0,0,-\frac{\sqrt{s}}{2}\right) \begin{array}{c}5 \text { not } s!\text { Protons have the full center } \\ \text { of mass every }\end{array}\right)$

$$
\Rightarrow p_{W}=x_{1} P_{1}+x_{2} P_{2}=\left(\left(x_{1}+x_{2}\right) \frac{\sqrt{s}}{2}, 0,0,\left(x_{1}-x_{2}\right) \frac{\sqrt{s}}{2}\right) .
$$

Useful to paranctaice p_{w} in terms of rapidity v :
$p_{w}=(\sqrt{\hat{s}} \cosh y, 0,0, \sqrt{\hat{s}} \sinh y)$ where $\rho_{w}{ }^{2}=\hat{s}$ (which we lease free to- now) Charge variables $\left(x_{1}, x_{2}\right) \rightarrow(\hat{s}, y)$:

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \frac{\sqrt{s}}{2}+\left(x_{1}-x_{2}\right) \frac{\sqrt{s}}{2}=\sqrt{\hat{s}}(\cosh y+\sinh y) \\
& \Rightarrow x_{1}=\frac{\sqrt{s}}{\sqrt{s}} e^{y}, \quad \operatorname{similarl} x_{2}=\frac{\sqrt{s}}{\sqrt{s}} e^{-y} \\
& \frac{\partial\left(x_{1}, x_{2}\right)}{\partial(\hat{s}, y)}=\left|\begin{array}{cc}
\frac{e^{y}}{2 \sqrt{s} \sqrt{s}} & \frac{e^{-y}}{2 \sqrt{s} \sqrt{s}} \\
\frac{\sqrt{3} e^{y}}{\sqrt{s}} & -\frac{\sqrt{3} e^{-y}}{\sqrt{s}}
\end{array}\right|=\frac{1}{s} \\
& \Rightarrow d x_{1} d x_{2} \delta\left(\hat{s}-m_{w}^{2}\right)=\frac{1}{s} d \hat{s} d y \delta\left(\hat{s}-m_{n}^{2}\right) \\
& \Rightarrow \sigma\left(p \bar{p} \rightarrow w^{+}\right)=\frac{\pi^{2} \alpha_{w}}{3 s}\left|v_{u d}\right|^{2} \int d y\left[f_{u}\left(\frac{m_{w}}{\sqrt{s}} e^{y}\right) f_{a}\left(\frac{m_{n}}{\sqrt{s}} e^{-y}\right)+f_{d}\left(\frac{m_{u}}{\sqrt{s}} e^{y}\right) f_{u}\left(\frac{m_{n}}{\sqrt{s}} e^{-y}\right)\right]
\end{aligned}
$$

Note that once we know the W exists, this process can be used to measure the PDF's!

W decays
Two kinds of decay processes, which look very different at colliders.'

$$
\text { "leptonic" } \quad(l=e, \mu, \tau)
$$

These matrix elements are very simile to the production matrix element: on's differences are color sums and CKM ecervents.
Hadronic: average over W spins: $1 \rightarrow \frac{1}{3}$

$$
\begin{array}{ll}
\text { Sum over quark spins: : } & \frac{1}{4} \rightarrow 1 \\
\text { sum over quark color: }: & \frac{1}{3} \rightarrow 3
\end{array}
$$

Sum ore quark color: $\quad \frac{1}{3} \rightarrow 3$
\Rightarrow overall factor of 12 in the matrix element

$$
\left.\langle | M\left\rangle^{2}=g^{2}\right| V_{C K M}\right|^{2} m_{w}^{2}=4 \pi \alpha_{w}\left|V_{C K m}\right| m_{w}^{2}
$$

So eng. $\Gamma_{w \rightarrow c \bar{s}}=\frac{1}{2 m_{w} \rightarrow \substack{\lambda \\ \text { 2-bos, } \\ \text { phacepece }}} \frac{1}{8 \pi} 4 \pi \alpha_{w}\left|v_{c s}\right|_{m_{w}}^{2}=\frac{\alpha_{w} m_{w}}{4}\left|v_{c c}\right|^{2}$

However, there are also $Q C D$ corrections from quarks emitting fond -state glues,
so $\Gamma_{w \rightarrow j e t s}=\frac{\alpha_{w} m_{w}}{4}\left(1+\frac{\alpha_{s}\left(m_{n}\right)}{\pi}\right)\left[\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}+\left|V_{u d}\right|^{2}+\left|V_{n s}\right|^{2}+\left|V_{b s}\right|^{2}\right]$

$$
=1.346 \mathrm{ev}
$$

$\Gamma_{\text {tot }}=2.085$ GeV from POG, so predict $B r(w \rightarrow$ jets $)=\frac{\Gamma_{w \rightarrow j e t s}}{\Gamma_{\text {tor }}}=64 \%$.
Experimatally, $B_{r}(W \rightarrow j e f)=67.41 \%$; not bad! (RCD corrections important)
Fur leptonic decoy, no sum over color: $\Gamma_{w \rightarrow e \bar{v}}=\frac{\alpha_{w} M_{v}}{12}$, equal fo$e, \mu, \tau$ up to phase space effectio for nonzero M_{1}. Again, well-supported by data.

Even without knowing W mass precisely, con p-edict ratios of branching ratios:

$$
\frac{B_{r}\left(w^{+} \rightarrow e^{+} \bar{v}_{e}\right)}{B_{r}\left(w^{+} \rightarrow \text { hadar }\right)}=\frac{1 / 3}{\left.\left(1+\frac{\alpha_{3}}{\pi}\right) \sum_{\substack{i=v_{i} \\ i=d_{i} \mid, b}}\right|^{2}}
$$

Measwerent of W mass is a little tricky: for 2-jet events, $\left(p_{j},+p_{j}\right)^{2}=m_{n}{ }^{2}$, but lots of QCD background. Instead, use transverse mass derived from leptaic decoys as you sam in HW3.

2 boson decays

For HW, you will calculate the 2 production cross section at $e^{+} e^{-}$ colliders, here we will focus on the decay modes. The 2 boson couples to all SM fermions:

$$
\begin{array}{rl}
\sim_{2}^{m} & i \mu
\end{array}=\frac{i g}{\cos \theta_{w}}\left(T^{3} \gamma^{m} p_{L}-Q \sin ^{2} \theta_{w} \gamma^{\mu}\right) \epsilon_{m}\left(p_{2}\right) .
$$

Here, $C_{V} \equiv T^{3}-2 Q \sin ^{2} \theta_{w}$ and $C_{A} \equiv T^{3}$ are "vector" and "axial-vector" couplings.
This wag of writing things makes spino-poducts in 4-component notation easier:

For example, for $f=e, T=-\frac{1}{2}$ and $Q=-1, c_{v}=-\frac{1}{2}+2 \sin ^{2} \theta_{w}, c_{A}=-\frac{1}{2}$.

$$
\begin{aligned}
& \text { (setting, } \left.m_{e}=0\right)=\frac{1}{3} \frac{g^{2}}{\cos ^{2} \theta_{0}} \operatorname{Tr}\left[P_{1} \gamma^{v}\left(c_{V}-c_{A} \gamma^{s}\right) \boldsymbol{P}_{V} \gamma^{m}\left(c_{V}-c_{A} \gamma^{s}\right)\right]\left(-\eta_{\mu v}+\frac{p_{2 \mu} p_{2 v}}{m_{2}^{2}}\right) \\
& =\frac{1}{3} \frac{\eta^{2}}{4 \cos ^{2} \theta_{\omega}} \operatorname{Tr}\left[p_{1} V^{v} \phi_{2} \gamma^{\mu}\left(c_{v}-c_{A} \gamma^{s}\right)\left(c_{v}-c_{A} \gamma^{s}\right)\right]\left(-\eta_{\mu v}+\frac{p_{2 \mu}, p_{2 v}}{m_{2}{ }^{2}}\right) \\
& =\frac{1}{3} \frac{q^{2}}{\operatorname{ros}^{2} \theta_{\omega}} \operatorname{Tr}\left[p_{1} \gamma^{v} p_{2} \gamma^{\mu}\left(c_{V}{ }^{2}+c_{A}^{2}-2 c_{v} c_{A} \gamma^{3}\right)\right]\left(-\eta_{\mu v}+\frac{p_{2 \mu} p_{2 v}}{m_{2}^{2}}\right)
\end{aligned}
$$

As with top quark decay, the γ^{5} trace is proportional to the antisymmetric taser $\epsilon^{\text {muN } \beta}$, so it varisies when contracted with the polarization sum. The 4 -vector products are identical to previous calculations, so we con just skip to the answer:

$$
\begin{aligned}
&\langle | M\left\rangle^{2}\right.=\frac{g^{2}}{3 \cos ^{2} \theta \omega}\left(p_{1} \cdot p_{2}+\frac{2\left(p_{1} \cdot p_{2}\right)\left(p_{2} \cdot p_{2}\right)}{m_{2}^{2}}\right)\left(c_{v}^{2}+c_{A}^{2}\right) \\
&=\frac{9^{2} m_{z}^{2}}{3 \cos ^{2} \theta_{w}}\left(c_{v}^{2}+c_{A}^{2}\right) \\
&\left.\left.\Gamma_{z a c^{2}+-}=\frac{1}{2 m_{2}} \frac{1}{8 \pi}\langle | M_{z \rightarrow e+c^{-}}\right)^{2}\right\rangle=\frac{\alpha_{w} m_{2}}{3 \cos ^{2} \theta_{w}}\left(c_{v}^{2}+c_{A}^{2}\right)
\end{aligned}
$$

As with w's, this predicts,

- equal branching fractions into $\mathrm{e} / \mu / \tau$, up to mass effects (HW)
- hadraic decays enhanced by a factor of 3 for color, but also $c_{v}{ }^{2}+c_{A}^{2}$ is different! In the end, 70% to hadrons vs. 30% to chased leptons + neutrinos.
- Decay products are polarized! Indeed, W decay products are fully polarized (in massless approximation), since W only couples to L spino-s, but 2 decays ace partially polarized, depending on fermion (a tH)
- Easy to reconstruct mass of Z at $e^{+} e^{-}$collider: Look for events with $\mu^{+} \mu^{-}, M_{2}^{2}=\left(\rho_{\text {m }}+\rho_{M}\right)^{2}$

Discovers of the Highs
Finally, let's examine the last piece of he Standard Model. For HW, you will calculate $H \rightarrow 65$ and $H \rightarrow W W, 22$. Since Hisss couplings are proportional to mass, we should ter to produce it ad detect it with the heaviest initial-and final-state particles possible. Howerc, perversely, $m_{h}<2 m_{t}$ and $m_{h}<2 m_{w}$, so decays into on-shell tops or gauge bosons are kinematically fo -bidden. Even wo -se, $m_{b} \approx 0.02 m_{t}$, so decors to b's are smaller $63 \sim 10^{4}$, and 2 -jet events have an enorrow, QCD backsone! To find the Hiss at the LHC, experimentalists and theorists had to get creative.

To strategies:

1) off-stell gauge bosons, $H \rightarrow Z Z^{\rightarrow} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$

Here, are 2 can be on-shell, so $\left(p_{m_{1}}+p_{m_{2}}\right)^{2}=m_{2}^{2}$, and together, $\left(p_{r_{1}}+p_{r_{2}}+p_{\mu_{3}}+p_{r_{+}}\right)^{2}=m_{h}^{2}$
Indeed, this "golden channel" confirmed the initial tires discovers, and with more data became the best channel to studs the Hiss,
2) photon and gluon couplings

The photon ad gluon are massless, so there is no coupling to the Higgs in the Lagrangian. However, such a coupling does exist at 1-loop, much like the anomalous magnetic nomat diagram we studied. Calculating these diagrams is beyond the scope of this course, but note that they are both proportional to $\frac{n_{t}}{v}$ when the loop consists of top quarks. This lets us exploit the lane coupling to tops as a virtual particle. Indeed, in the first Higgs discovers analysis in 20012, the Highs was mostly produced via gluon fusion (left diagram) and detected via the diphoton chanel (right diagram), through a small bump in the invariant mass distribution

$$
n_{r r}^{2} \equiv\left(P_{r_{1}}+P_{r_{2}}\right)^{2} \text { at } m_{h}^{2} \approx(125 \mathrm{GeV})^{2} .
$$

