Spontancously broken gauge symmetries

Last time we saw an example of a spontaneously broken global symmetry. Goldstones theorem told us that for each gerentor of the broken symmetry, a massless particle exists in the spectrum. This week, we will investigate spontaneous breaking of gauge symmetries. The upshot: instead of getting new massless particles, the gauge bosons will become massive.

There are lots of technical details involved in the group theory structure of the Standard Model, so we will warn up with a simpler example, a U(1) gauge theors. While this does not describe the standard Model, it maps exactly on to the phenomenon of superconductivity, so it will be worth the effort.

Let's yo back to the complex scalar Lagrangian, but replace the ordinary derivative with a covariant derivative and add the kinetic term for a $U(1)$ gauge field:

$$
\mathcal{L}=\left(\partial_{\mu} \phi^{\phi}-i e A_{\mu} \phi^{\theta}\right)\left(\partial^{\mu} \phi+i e A^{m} \phi\right)+m^{2}|\phi|^{2}-\frac{\lambda}{4}|\phi|^{4}-\frac{1}{4} F_{n} F^{\mu v}
$$

Recall that the $U C 1)$ transformation is $\phi \rightarrow e^{-i \alpha()} \phi$.
The potential $V(\phi)$ is the same regardless of whether this symmetry is global or gauged, so by ow results from last time, the ground state is at $\langle\phi\rangle=\sqrt{\frac{2 m^{2}}{\lambda}} e^{i \theta}$. By petforning a $u(1)$ transformation, we con set $\theta=0$, so $\langle\phi\rangle=\sqrt{\frac{2 m^{2}}{\lambda}} \equiv \frac{v}{\sqrt{2}}$ where v is the vacuum expectation value, abbreviated "ver." ($\sqrt{2}$ is conventional)

As before, lefts write $\phi=\frac{v+\sigma(x)}{\sqrt{2}} e^{i \frac{\pi(x)}{v}}$ and express the lagrongim in terms of the real fields σ and π.

$$
\begin{aligned}
& \partial_{\mu} \phi=\left[\frac{i}{V} \partial_{\mu} \pi \frac{v+\sigma}{\sqrt{2}}+\frac{\partial_{\mu} \sigma}{\sqrt{2}}\right] e^{i \pi / V} \\
& \partial_{\mu} \phi^{*}=\left[\frac{-i}{V} \partial_{\mu} \pi \frac{v+\sigma}{\sqrt{2}}+\frac{\partial_{\mu} \sigma}{\sqrt{2}}\right] e^{-i \pi N}
\end{aligned}
$$

Kinetic term: $\left[-\frac{i}{v} \partial_{\mu} \pi \frac{v+\sigma}{\sqrt{2}}+\frac{\partial m \sigma}{\sqrt{2}}-i e A_{\mu} \frac{v+\sigma}{\sqrt{2}}\right]\left[\frac{i}{v} \partial^{\mu} \pi \frac{r+\sigma}{\sqrt{2}}+\frac{\partial^{\prime} \sigma}{\sqrt{2}}+i e A^{\mu} \frac{v+\sigma}{\sqrt{2}}\right]$
(note exponential cancel)

$$
\begin{aligned}
= & \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi \frac{(v+\sigma)^{2}}{v^{2}}+\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+e^{2} \frac{(v+\sigma)^{2}}{2} A_{\mu} A^{\mu} \\
& +e \frac{(v+\sigma)^{2}}{2 v} \partial_{\mu} \pi A^{\mu}
\end{aligned}
$$

But since the $U(1)$ symmetry is a local symmetry, we can apply an appropriate gauge transformation to set $\pi(x)=0$ everywhere.

$$
(\pi(x) \rightarrow \pi(x)-v \alpha(x) \text {, just choose } \alpha(x)=\pi(x))
$$

This is known as mitary gauge. In this gauge, the ϕ kinetic term is

$$
\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+\frac{1}{2} e^{2} v^{2} A_{\mu} A^{\mu}+e^{2} v \sigma A_{\mu} A^{\mu}+\frac{1}{2} e^{2} \sigma^{2} A_{\mu} A^{\mu}
$$

The game field
has acquired a mass!

$$
m_{A}=e v
$$

We say the gauge field has "eater" the field π to acquire a mass, and hence a physical longitudinal polarization. In spontaneously broken gauge theories, instead of a massless Goldstone boson, we get a mars term for the gauge field.
Note that there are also $\sigma-A$ interactions, but these are essentially the same as the $\phi-A$ interactions which came from the covariant derivative. Let's look at the rest of the Lagrangian:

$$
\begin{aligned}
& +n^{2}|\theta|^{2}=\frac{m^{2}}{2}(v+\sigma)^{2}=\frac{n^{2}}{2} v^{2}+n^{2} v \sigma+\frac{m^{2}}{2} \sigma^{2} \\
& -\frac{\lambda}{4}|\phi|^{4}=\frac{-\lambda}{16}(v+\sigma)^{4}=-\frac{\lambda}{16} v^{4}-\frac{\lambda}{4} v \sigma^{3}-\frac{3 \lambda}{8} v^{2} \sigma^{2}-\frac{\lambda v^{3}}{4} \sigma-\frac{\lambda}{16} \sigma^{4}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { nim }_{n=0}
\end{array}\right.
$$

Recall $v=\frac{2 m}{\sqrt{\lambda}}$, so $m^{2} v=\frac{\lambda}{4} v^{3} \Rightarrow$ term (inca- in o cancels las it must, since we defined ϕ such that the minimum of the potential was at $\sigma=0$)

So in terms of σ, there are Feynman diagram vertices an follow.: (dashed lines for scalars)

[note: factor of N ! for N identical particles at each vertex, so this is why pretactors chare] while we stated from only a single interaction $\lambda|\varnothing|^{4}$, we get cubic and quartic interactions, whose relative coefficients are predicted by the symmetry breaking. The mass term is also related to the coupling:

$$
m_{\sigma}=\sqrt{2} m
$$

So measuring the mars and the size of the cubic interaction predicts the size of the quartic interaction. This is a powerful consistency check of the theory, and a smoking gun for a Symmetry hidden in the Lagrangian.

Let's do some example calculations to see how this would work in practice. First, we need to revisit the propagator for a massive vector field:

$$
\min =\frac{i}{p^{2}-m_{A}^{2}}\left(-\eta^{m v}+\frac{\rho^{2} p^{v}}{\frac{m_{A}^{2}}{2}}\right)
$$

when we discussed the ρ meson, we didn't include this last term. Because of gauge symmetry, the propagator is gauge-dependent, but this arbitron choice cancels out of physical observables. However, in other gauges, the would-be Goldstone $\Pi 1$ reappears, So we will stick with unitary gauge for simplicity.
Polarization sums: $\sum_{\rho \in=0} \epsilon^{\mu} \epsilon^{v \mu}=-\eta^{\mu v}+\frac{p^{* \mu \nu}}{m_{A}^{2}}$ (sum over spins gives propagator) $\ldots-\frac{i}{p^{2}-m_{\sigma^{2}}}$

Consider $\sigma \sigma \rightarrow A A$ at tree level. Four possible diagreans:

p_{1}.

$$
\begin{aligned}
i \mu= & 2 i e^{2} \epsilon_{\mu}^{\theta}\left(p_{3}\right) \epsilon^{\beta \mu}\left(p_{4}\right)+\left(-\frac{3}{2} i \lambda v\right)\left(\frac{i}{\left(p_{1}+p_{2}\right)^{2}-m_{\sigma}^{2}}\right)\left(2 i e^{2} v\right) \epsilon_{\mu}^{A}\left(p_{3}\right) \epsilon^{\beta_{\mu}}\left(p_{4}\right) \\
& +\left(2 i e^{2} v\right)^{2}\left(-i \eta^{\mu v}\right)\left(\frac{1}{\left(p_{1}-\beta_{3}\right)^{2}-x^{2}}+\frac{1}{\left(p_{1}-p_{4}^{2}\right)^{2}-x_{4}^{2}}\right) \epsilon_{\mu}^{0}\left(v_{3}\right) \epsilon_{v}^{A}\left(p_{4}\right)
\end{aligned}
$$

where $m_{\sigma}=\sqrt{2} m, V=\frac{2 m}{\sqrt{\lambda}}, m_{A}=e V$
Note that despite appearances, when $p_{1}, p_{2} \ll m_{\sigma}, m_{A}$ all diagrams scale the same:

$$
\frac{(\lambda v)\left(e^{2} v\right)}{m \sigma^{2}}=\frac{4 m^{2} e^{2}}{2 m^{2}}=2 e^{2}, \frac{\left(e^{2} v\right)^{2}}{m A^{2}}=\frac{e^{4} v^{2}}{e^{2} v^{2}}=e^{2} \text {. }
$$

This is a consequace of the spontaneous symmetry breaking: the diagrams "know" about the original theory without the σ, where $\phi \phi \rightarrow A A$ only depends on the gauge interaction and not the $\lambda|\phi|^{4}$ term.

