Electroweak interactions
At long last, we are ready to consider the full SM Lagrangian. Last time we studied the gauge sector, and we can now look at fermion interactions and Yukava terms.

$$
\alpha \supset-Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}-Y_{i j}^{n} Q_{i}^{+} \tilde{H} u_{R}^{j}+\text { h.c. }
$$

As we did last time, we will first set $h=0$, then put it back in with $v \rightarrow v+h$.

$$
\mathcal{L}_{y_{\text {kara }}} \supset-\frac{v}{\sqrt{2}} e_{L}^{+} y^{e} e_{R}-\frac{v}{\sqrt{2}}\left[d_{L}^{+} y^{d} d_{R}+u_{L}^{+} y^{u} u_{R}\right]+\text { h.c. }
$$

where y^{e}, y^{d}, y^{u} are 3×3 matrices. To find the mass eigestates (which will represent propagating particles), we need to diagonalize these matrices. Focus on quarks first.
Math fact an arbitrary complex matrix may be diagonalized with two mitory matrices:

$$
\begin{aligned}
& y_{d}=U_{d} M_{d} K_{d}^{+} \\
& y_{u}=U_{u} M_{u} K_{u}^{+}
\end{aligned}\left\{\begin{array}{l}
U, K \text { mitary; M diagonal and real }
\end{array}\right.
$$

(This works because y^{+}is Hermitian, so it has cell eigenvalues, ad $y y^{+}=U M^{2} u^{+}$, but the extra matrix K is needed to "take ore square coot")

$$
\mathcal{L}_{\text {quirk }}>-\frac{v}{\sqrt{2}}\left[d_{L}^{+} u_{d} M_{d} K_{d}{ }^{+} d_{R}+u_{L}^{+} U_{u} M_{n} K_{n}^{+} u_{R}\right] \text { thee. }
$$

Now, rotate the quark field $d_{q} d_{R} \rightarrow K_{d} d_{R}, d_{L} \rightarrow U_{d} d_{L}$, $u_{R} \rightarrow K_{u} u_{R}, u_{L} \rightarrow u_{n} u_{L}$. The mass terms are now diagonal:

$$
\underset{\substack{\text { hark } \\ \text { y hank }}}{ }>-m_{j}^{1} d_{L}^{+j} d_{R}^{j}-m_{j}^{u} u_{L}^{+j} u_{R}^{j}+h . c .
$$

where $M_{j}{ }_{j} u$ are the diagonal elevate of $\frac{v}{\sqrt{2}} M^{u, d}$

However, the fermion kinetic terms change under this field redefinition. Let's look at right-handed fields (which don't transform under su(z) first:

$$
\mathcal{L}_{R} \supset u_{R}^{+i}\left(i \sigma \cdot \partial+\frac{g}{\cos \theta \omega} Q_{R}^{u} \sigma \cdot Z+\frac{2}{3} e \sigma \cdot A\right) u_{R}^{i}+d_{R}^{+i}\left(i \sigma \cdot d+\frac{g}{\cos \theta \omega} \theta_{R}^{d} \sigma \cdot Z-\frac{1}{3} e \sigma \cdot A\right) d_{R}^{i}
$$

where $Q_{R}^{n}=-\frac{2}{3} \sin ^{2} \theta_{w}, Q_{R}^{d}=\frac{1}{3} \sin ^{2} \theta_{w}$ are the Z-charges of the $R H$ quarks.
The covariant derivative is diagonal in flavorspace, so field rotations do not charge the fermion interactions with neutral gauge bosons: the SM has no flavor-changing neutral currents at tree level (though processes like $b \rightarrow 5 \gamma$ do arise at loop level, they are highly suppressed, so searching for these processes is a good way to look fir physics beyond the SM). Thus the matrices K completely drop out.
On the other hand, the left-haded terms are

$$
\left.\alpha_{L}\right)\left(u_{L}^{+} d_{L}^{+}\right)^{i}\left[i \bar{\sigma} \cdot \partial+\bar{\sigma}^{-r}\left(\begin{array}{cc}
\frac{g}{\cos \theta} Q_{L}^{u} Z_{\mu}+\frac{2}{3} e A_{\mu} & \frac{g}{\sqrt{\sqrt{2}} w_{\mu}^{+}} \\
\frac{g}{\sqrt{2}} w_{\mu}^{-} & \frac{g}{\cos \theta=\omega} Q_{L}^{d} Z_{\mu}-\frac{1}{3} e A_{\mu}
\end{array}\right]\binom{u_{L}}{d_{L}}^{i}\right.
$$

The off-dingonal terms involving the $W^{ \pm}$mix $u p$ and down, so under the field redefinitions $u_{L} \rightarrow u_{n} u_{L}, d_{L} \rightarrow u_{d} d_{L}$, these become

$$
\mathcal{L}_{L} \supset \frac{g}{\sqrt{L}}\left[w_{\mu}^{+} u_{L}^{+i} \bar{\sigma}^{\mu}(V)_{i ;} d_{L}^{j}+w_{\mu}^{-} d_{L}^{+i}\left(v^{+}\right)_{i j} u_{L}^{j}\right]
$$

where $V \equiv u_{u}^{+} u_{d}=\left(\begin{array}{ccc}v_{u d} & v_{u s} & v_{u b} \\ v_{c d} & v_{c s} & v_{c_{b}} \\ V_{t d} & v_{t s} & v_{t b}\end{array}\right)$ is the Cabibbo-Kobay
Experimataly, all of these entries are nonzero! This means that the weak interaction mixes generation, but only for left-handed fermion fields.

Let's count the number of parameters in the CKM matrix V.
It's unitary, since $V^{+} V=u_{d}^{+} u_{n} u_{n}^{+} u_{1}=1$, ad 3×3 so it has 9 real parameters. However, there is still some redundancy, since the transformations $\quad d_{L}^{j} \rightarrow e^{i \alpha,} d_{L}^{j}$
$u_{L}^{j} \rightarrow e^{i \beta_{j}} u_{L}^{j}$ lie e $d^{j} \rightarrow e^{i \alpha_{j}} d^{j}$

$$
d_{R}^{j} \rightarrow e^{i \alpha_{j}} d_{R}^{j}
$$

$$
u_{R}^{j} \rightarrow e^{i i_{j}} u_{R}^{j}
$$

and $u^{j} \rightarrow e^{i B_{j}} n^{j}$
in 4 -component no ta 60)
leave the mass terms invariant. There is one phase angle tor each flavor, so this is a $u(1)^{6}$ symmetry, which is a subgrap of the SU $(3)^{3}$ quark flavor symmetry when the yukar- couplings are absent. By performing these 6 transformations, we can eliminate 5 arbitrary phases in V : there is one phase remaining, since taking $\alpha_{j}=\beta_{j}=\theta$ leaves V invariant. Thus V contains 3 real angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one complex phase $e^{i \delta}$. (More on this next week.)
What about the leptons? The only ynkama term is $e_{L}^{+} y^{e} e_{R}$, so we can diagonalize y^{e} as $y^{e}=U_{e} M_{e} K_{e}^{+}$. Taking $e_{R} \rightarrow k_{e} e_{R}$ and $e_{L} \rightarrow u_{e} e_{L}$, we get charged lepton mars terms $m_{j}^{e} e_{L}^{+} e_{R}^{j}$ thc., where m; are the diagonal elements of M_{e}. The analogue of M_{v}, the neutrino mass matrix, is not in the Starbad Model Lagraysion but may be parameterized by a matrix called the PMNS matrix. However, since neutrinos (unlike quarks) can only" be defected via their interaction with tee W, it is often more convenient to leave the Lagrangian diagonal in flavor space and consider the mixing as part of the propagation of neutrinos (more on this next lecture).
(there is also neutrino neutral currant scattering, through the 2 , but W is much easier) Now that we have defined the fields in terms of physical mass eigenstates, we can write down the electroweak $(\operatorname{suc}(2) \times u(1))$ terms in the Lagrangian. Since the Lad R fields have the same electric charges after $\operatorname{su}_{2}(2)_{L} \times u(1)_{\times} \rightarrow u(1)_{E M}$, it is conventional to combine L add R chiral Fermion fields into a single Dirac spinor, as we did for the electron in QED. But because the WI only couple to L Fheidr,
we need the left-and cight-handed projectors;
$P_{R}\binom{\psi_{L}}{\psi_{R}}=\binom{0}{\psi_{k}}, P_{L}\binom{\psi_{L}}{\psi_{R}}=\binom{\psi_{L}}{0}$. Recall from our $\mu^{\perp} \mu$ Lelicilf studies
$P_{R}=\frac{1+\gamma^{5}}{2}=\left(\begin{array}{ll}0 & 1 \\ & 1\end{array}\right) \quad$ where $\gamma^{5}=\left(\begin{array}{cc}-\mathbb{1} & \\ & \mathbb{1}\end{array}\right)$, which satiafies $P_{L}=\frac{1-r^{5}}{2}=\left(\begin{array}{ll}1 & 0\end{array}\right) \quad\left(r^{5}\right)^{2}=\mathbb{1}_{4 \times 4}$ and $\left\{\gamma^{5}, r^{r}\right\}=0$.

In practice, this just rears re can use γ^{m} instead of σ^{-}and $\bar{\sigma} \mu$ The electroucak interaction terms in the mass basis con be compactly written

$$
\begin{aligned}
\mathcal{L}_{E W} & =\frac{e}{\sin \theta_{w}} Z_{\mu} \nu_{Z}^{\mu}+e A_{\mu} J_{E M}^{\mu}-\frac{e}{\sqrt{2} \sin \theta_{w}}\left[w_{\mu}^{+} \bar{u}_{L}^{i} \gamma^{\mu}(v)_{i} \cdot d_{L}^{j}+w_{\mu}^{-} \bar{d}_{L}^{j} \gamma^{\prime}\left(v^{+}\right)_{i} u_{L}^{j}\right] \\
& -\frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{e}_{L} \not \psi_{v_{e}}+\bar{\mu}_{L} \mathscr{W}_{\mu} \bar{v}_{\mu}+\bar{\tau}_{L} \mathscr{W}_{\tau}^{-}\right]+h . c .
\end{aligned}
$$

where $V_{i j}$ are CKM matrix entries and

$$
\begin{aligned}
& J_{E M}^{\mu}=\sum_{i} Q_{i}\left(\bar{\psi}_{L}^{i} \gamma^{\mu} \psi_{L}^{i}+\psi_{R}^{i} \gamma^{\mu} \psi_{R}^{i}\right) \\
& \left.J_{2}^{\mu}=\frac{1}{\cos \theta_{w}}\left[\left(\sum_{i} \bar{\psi}_{L}^{i} \gamma^{\mu} T^{3} \psi_{L}^{i}\right)-\sin ^{2} \theta_{w}\right)_{E M}^{\mu}\right]
\end{aligned}
$$

To use this, just set $\psi=$ your favorite fermion and $T^{3}= \pm \frac{1}{2}$ for upperllover components of the original su(2) doublet. For example,

$$
{ }_{d}^{d} z \sim=\frac{i e}{\sin _{w} \cos \theta_{N}}\left(-\frac{1}{2} \gamma^{m} P_{L}+\frac{1}{3} \sin ^{2} \theta_{w} \gamma^{\alpha}\right)^{2}
$$

(note that we only need one factor of P_{L} because it's a projector:

This way, we can use the usual Dirac spinous for external states, etc. (If you'ce interested in 2-componat (anquare, see arXiv: 0812.1594)

Finally, we put buck in the Hiss boson. The terms proportional to v were just the fermion mass terms so this is easy:

$$
\underbrace{*}_{h}=-i \frac{m_{\psi}}{v} \text { for } \psi=e, \mu, \tau, u, d, c, s, t, \sigma
$$

Combined with the gauge boson self-interaction terns (Schwartz (29.9)), we now have the tools to calculate all amplitudes in the standard Model! We will apply these tools to some specific physical processes next time.

Basic electroweak processes and neutrino oscillations
Let; use the Feynman rules derived last lecture to calculate the decay width of the top quark.

$$
\begin{array}{r}
\Gamma_{t \rightarrow \text { amptring }}<\left.\mu_{t \rightarrow b w}\right|^{2}+\left|\mu_{t \rightarrow s w}\right|^{2}+\left|\mu_{t \rightarrow d w}\right|^{2} \\
\alpha\left|V_{t b}\right|^{2} \\
\alpha\left|V_{t s}\right|^{2} \quad \alpha\left|V_{t d}\right|^{2}
\end{array}
$$

Experimataly, $V_{t b} \gg V_{t s}, V_{t d}$, so the top quark decays essentials 100% of the time into 6 quarks. We can calculate $\Gamma_{t \rightarrow \text { ow }}$ and it will be straight forward to extend this to the remaining two flavors.

$$
i \mu_{t \rightarrow 6 w}=\frac{t}{p} \sum_{w^{+}+k}^{b} q / \frac{i e}{\sqrt{2} \sin \theta n} V_{t b} \bar{u}(q) r^{n}\left(\frac{1-r^{5}}{2}\right) u(p) \epsilon_{\mu}^{*}(k)
$$

We have to be a bit careful conjugating the spinor product with γ^{s},

$$
\left(\bar{u}(q) r^{n}\left(\frac{1-\gamma^{s}}{2}\right) u(p)\right)^{\infty}=u^{+}(p) \underbrace{\left(\frac{1-\gamma^{s}}{2}\right)}_{\substack{\text { Hemmitim, } \\ \text { Sons tempers }}}\left(r^{m}\right)^{+} \gamma^{0} u(q)
$$

As with QED, vex $\left(\gamma^{m}\right)^{+} r^{0}=r^{0} r^{m}$, but to move r^{0} past r^{s}, we have to anticomunte: $\left(\frac{1-r^{5}}{2}\right) r^{0}=r^{0}\left(\frac{1+r^{5}}{2}\right)$. These signs are tricks, and Show up everywhere in electroweak calculations!

$$
\Rightarrow\langle | \mu\left\rangle^{2}=\frac{1}{2} \frac{e^{2}\left|v_{t b}\right|^{2}}{8 \sin ^{2} \theta_{w}} \operatorname{Tr}\left[\left(q+m_{b}\right) \gamma^{\mu}\left(1-r^{s}\right)\left(\phi+m_{t}\right)\left(1+\gamma^{5}\right) \gamma^{v}\right]\left(-\eta_{m v}+\frac{k_{m} k_{v}}{m_{v}{ }^{2}}\right)\right.
$$

where we used the result for sums over massive vector polarizations from last week. Since $n_{b}=4 \mathrm{GeV}$ but $m_{t}=173 \mathrm{GeV}, m_{b} \ll m_{t}$ and we can set $m_{b}=0$ in the trace.
There ore a couple more trace tricks involving γ^{s}.

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{5}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{2} \gamma^{v} \gamma^{5}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{\sim} \gamma^{v} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{m v \rho \sigma}
\end{aligned}
$$

these are also helpful for evaluating, polarized amplitudes using projectors instead of left- or right-harled spines

