For a full justification of all the properties of non-Abelian gauge theories, plus lots of subtleties I've skipped, take advanced aFT! Here we will just investigate a few of the consequaces.

Corrections to $e^{+} e^{-} \rightarrow$ hadrons

is the same as QED but with a factor of $g_{s}\left(T^{a}\right)_{i j}$ at the gluon vertex. Compared to $e^{+} e^{-} \rightarrow q \bar{q} r$ in QED, we yet an extra factor of:

$$
\begin{aligned}
& \sum_{a=1}^{p} \sum_{i=1}^{3} \sum_{j=1}^{3}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{i j}^{D}=\sum_{a, j}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{j: i}=C_{F} T r\left(\delta_{i j}\right)=\frac{4}{3}(3)=4 \text {, times } \alpha \text {, instead of } \alpha \text {. } \\
& T \text { is Herniation }
\end{aligned}
$$

$\underset{\theta^{+} c^{-} \rightarrow \text { hadrons }}{\text { colors coles }}=R \sigma_{0}\left(1+\frac{\alpha_{s}}{\pi}+\frac{3 \alpha}{4 \pi}+\theta\left(\alpha_{s}^{2}\right)+\theta\left(\alpha^{2}\right)\right) \quad$ (inclusive cross section)
$T_{R \text {-ratio, contains factor of } 3 \text { from sum ore colors }}$
This gives us a way to measure $\alpha_{s}\left(Q^{2}\right)$ as a function of $Q^{2}=E_{c_{n}}{ }^{2}$. (See plot of α on class schedule pase.)
Numerically, $\alpha_{s}(Q=100 \mathrm{CeV}) \approx 0.1$, while $\alpha(Q=100 \mathrm{CeV}) \approx 0.0077$, so the strong force is still strong (a teleost, stronger the QED) even at these energies.
Note that this reaswenent is an example of an in franed and collinear safe observable. We are not requiring that there be exactly 2,3,... hadrons in the final state, since we can change this number by emitting an arbitrary number of low-enersy and small-angle gluons, the exclusive cross section for a fixed number of hadrons is an ill-defined observable. Evan shapes for $e^{t} e^{-} \rightarrow 999$

In a defector, a quack jet and a gluon jet ace (to a Fist approximation) indistinguishable. So instead of considering the energy spectrum of tereslao, we will define an observable which is insensitive to quarks vs. glues:
Thrust $\tau \equiv \max \left\{x_{i}\right\}$ where $x_{i}=\frac{2 Q \cdot p_{i}}{Q^{2}}$ we the energy fractions of the three jets $(i=1,2,3)$. We san these variables for $e^{+} e^{-}-\mu^{+} \mu^{-r} r$: they are identical here, with $x_{1}+x_{2}+x_{3}=2$.

We want to compute $\frac{d \sigma}{d \bar{c}}$. To gain some intuiform for why this il called an
event shape:

"back-to-buck"

$$
\left(x_{3}=0\right) \rightarrow 2 \text { jets }
$$

"Mercedes-Benz": $x_{1}=x_{2}=x_{3}=\frac{2}{3}$
Recall from $Q E D$ that $\frac{d_{\sigma}^{r}}{d x_{1} d x_{2}} \propto \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$. The analogous formula for $Q \subset D$
just adds a color factor as before. $\frac{d^{2} \sigma}{d x_{q} d x_{\bar{q}}}=\sigma\left(c^{+} e^{-} \rightarrow q \bar{q}\right) \frac{\alpha_{s}}{2 \pi} C_{F} \frac{x_{q}^{2}+x_{\bar{q}}^{2}}{\left(1-x_{q}\right)\left(1-x_{\bar{q}}\right)}$
Let's casiter the case when the gluon is collinear with the quark, and define $z=\frac{E_{q}}{E_{q}+E_{g}}=\frac{x_{q}}{x_{q}+x_{g}}=\frac{x_{q}}{2-x_{q}}$ as the energy fraction remaining in the quark

$$
Q \cdot p_{i}=E_{1 m} E_{i}
$$

1-2

- In the collinear limit, 4-momatum after splitting:
conservation means antiquark and quark+ gluon share enemy equally, so $x_{\bar{q}} \hat{\sim} 1$ and $z=x_{9}, 1-z=x_{9}$.

Now, $\frac{2 p_{q} \cdot p_{q}}{Q^{2}}=\frac{2 E_{q} E_{g}(1-\cos \theta)}{Q^{2}}=\frac{x_{q} x_{g}}{2}(1-\cos \theta) \approx \frac{x_{q} x_{g}}{4} \theta^{2}$ for small θ. on the other hand, $Q=P_{q}+P_{\bar{q}}+P_{9}$ so $Q-P_{q}=P_{q}+P_{9}, Q^{2}-2 Q \cdot P_{q}=2 P_{q} \cdot P_{q}$,

$$
\frac{2 p_{q} \cdot \rho_{\rho}}{Q^{2}}=1-\frac{2 Q \cdot p_{\bar{q}}}{Q^{2}}=1-x_{\bar{q}} \text {, so } \theta^{2}=\frac{4\left(1-x_{\bar{q}}\right)}{x_{1} x_{9}} \approx \frac{4\left(1-x_{q}\right)}{x_{q}\left(1-x_{q}\right)} \leftarrow \text { collinear limit, } x_{\bar{q}} \approx 1
$$

Change variables $\left\{x_{9}, x_{\bar{q}}\right\} \rightarrow z, \theta^{2}$, Writing $x_{q}=1-\frac{2(1-z)}{4} \theta^{2}$, the Jacobian is $\left|\frac{\partial x_{\overline{9}}}{\partial \theta^{2}}\right|=\frac{2(1-2)}{4}=\frac{1-x_{5}}{\theta^{2}} \quad\left(\frac{\partial x_{9}}{\partial 2}=1\right)$

$$
\begin{aligned}
\Rightarrow \frac{d^{2} \sigma}{d z d \theta^{2}}=\frac{1-x_{\bar{i}}}{\theta^{2}} \frac{d^{2} \sigma}{d x_{1} d x_{\bar{i}}} & =\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) \frac{\alpha_{s}}{2 \pi} C_{1}=\frac{1}{\theta^{2}} \frac{z^{2}+\left(1-\frac{2(1-z)}{4} \theta^{2}\right)^{2}}{1-2} \\
& =\sigma\left(e_{e}^{+} \rightarrow a \bar{q}\right) \frac{\alpha_{s}}{2 \pi} C_{F} \frac{1}{\theta^{2}} \frac{z^{2}+1}{1-2} \text { to lading order in } \frac{1}{\theta^{2}} .
\end{aligned}
$$

This should look very familiar!! Taking $2 \rightarrow 1-2$, this is precisely te splitting function for e \rightarrow err you will derive in HW 6 , with a factor of C_{F}. We can write schematically
\qquad

$$
\frac{d^{2} \sigma(q \rightarrow q 9)}{d z d \sigma^{2}}=\frac{\alpha_{s}}{2 \pi} \frac{1}{\theta^{2}} P_{q g \leftarrow q} \text { (z) whee }
$$

$P_{1 g \in q}(2)=C_{F} \frac{1+2^{2}}{1-2}$ is the universal collinear splitting function.
Similar expressions exist for $P_{q \bar{q} e 9, ~ P g g e n g, ~ m o r e ~ o n ~ t h i s ~ s h o r t h . ~}^{\text {g }}$
Back to thrust: in the collinear limit, since $x_{\bar{q}}=1-\theta\left(\theta^{2}\right)$ and $x_{q}+x_{9} \approx 1$, $\tau=\max \left\{x_{i}\right\}=x_{\bar{q}} \rightarrow 1$. Let's also take the soft limit where the gluon is very low -energy, $2 \rightarrow 1$.

$$
P_{q}\left(z, \theta^{2}\right)=\frac{\alpha_{s}}{2 \pi} C_{F} \frac{1+z^{2}}{1-2} \frac{1}{\theta^{2}} d z d \theta^{2} \approx \frac{\alpha_{s}}{\pi} C_{F} \frac{1}{1-z} \frac{1}{\theta^{2}} d z d \theta^{2},
$$

with $1-\tau=\frac{1-2}{4} \theta^{2}$. We want to compute $\frac{d \sigma}{d(1-\tau)}$, but this blows up when $\theta \rightarrow 0$ and $2 \rightarrow 1$! These are the same soft and collinear divergences al sam in $Q E D$. Are me screwed?
Not so fast! Note that $P_{q \times \pi}\left(2 a 1, \sigma^{2} \rightarrow 0\right)=2 \frac{\alpha_{s}}{\pi} C_{F} d \log \frac{1}{1-2} d \log \frac{1}{\sigma^{2}}$, so probability for emitting a soft and collinear gluon is flat in $\log \frac{1}{1-2}$ and $\log \frac{1}{\sigma^{2}}$. Now note lon $\frac{1}{1-\tau}=\log \frac{1}{1-2}+\log \frac{1}{0^{2}}+\log 4$, so this in a straight line in the log-log plane:

$$
\begin{aligned}
& \operatorname{lng} \frac{1}{1-2} L^{\log \frac{1}{4(1-t)}} \quad U_{s e} \text { this to calculate } C D F \sum\left(\tau_{0}\right) \text {, ide porowiilig } \\
& \text { soft } \uparrow \\
& \text { that } 1-\tau<1-\tau_{0} \text {. Discertizing trimgle into } N \text { squeces } \\
& \text { of ale } d A \text {, so } A_{T}=N d A \text {, } \\
& P\left(1_{0} \text { gluon in triangle }\right)=\lim _{N \rightarrow \infty} \prod_{i=1}^{N}\left(1-\frac{2 \alpha_{s}}{\pi} C_{F} d A\right) \\
& =\lim _{N \rightarrow \infty}\left(1-\frac{2 \alpha_{S}}{\pi} C_{F} \frac{A_{T}}{N}\right)^{N}=\exp \left(-\frac{2 \alpha_{S}}{\pi} C_{F} A_{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{T}=\frac{1}{2} \log ^{2}\left(4\left(1-\tau_{0}\right)\right), \text { so } \\
& \Sigma\left(\tau_{0}\right)=\exp \left(-\frac{\alpha_{S}}{\pi} C_{F} \log ^{2}(4(1-\tau))\right) \\
& P(\tau)=\frac{d \varepsilon(\tau)}{d(1-\tau)}=-\frac{2 \alpha_{S} C_{F}}{\pi} \frac{\log (4(1-\tau))}{1-\tau} \exp \left[-\frac{\alpha_{s}}{\pi} C_{F} \log ^{2}(q(1-\tau))\right]
\end{aligned}
$$

Despite divergences, having only soft/collineor emission $(\tau \rightarrow 1)$ is wot only finite, but exponentially unlikely! $\exp \left(\alpha_{s}\right)$ cannot come from any individual Feynman diagram. In fact, what we have done is resumed an infinite series of Feynman diagrams corresponding to arbitrary saunters of gluons (see plot on course website). $P(\tau)$ is known as the Sudatory form factor. The interpretation is that then is always some finite-arik emission in $Q \subset D$.

Splitting functions and the parton shower
We found that the probability for collinear splitting is $d \sigma(x \rightarrow y+g)=d \sigma(x \rightarrow y) d t d z \frac{1}{t}\left[\frac{\alpha_{s}}{2 \pi} C_{F} \frac{1+z^{2}}{1-z}+\theta\left(\frac{t}{\alpha^{2}}\right)\right]$. We took $t=\theta^{2}$, but in geneal we could use any variable which becomes singular in the Collinear limit. For example, $n^{2} \equiv\left(\rho_{q}+\rho_{q}\right)^{2}=2 E_{q} E_{g}(1-\cos \theta)$ is the invariant mass of the quark-gluon pair, add is proportional to σ^{2} in the collinear limit.

Thin suggests a convenient way to simulate the behavior of $Q C D$: Create a Marker chain Monte carlo $X \rightarrow Y+9$

$$
\longrightarrow \underset{\rightarrow w+y}{L+y}, \text { etc., }
$$

Where the splitting probability at each step is given as above.
Each dawigter in the chain is called a parton.
To aroid the soft and collinear divergence, use the Sudatory factor:

$$
\frac{d \sigma}{d t d z}=\exp \left(-\frac{\alpha_{s}}{\alpha \pi} C_{F} \ln ^{2} \frac{Q}{t}\right) \frac{1}{t} \frac{\alpha_{s}}{2 \pi} C_{F} \frac{1+z^{2}}{1-z}
$$

t can also be interpectel as the amount the initial quark is offestell, So simulations work $6 y$ first picking a moreatim for the hardest gluon, then next-hardest, etc., at each step decreasing t mail the sudatory Factor suppresses further emission.

If we try to calculate the mas of a jet, $\left(\sum p_{i}\right)^{2}$, this will be dominated by the hardest parton (largest t), which is suppressed as $\frac{1}{t}$ at large t and exponentially at small t. So there is a nice global maximum, and the jet mass is a well-detined infrared and collinear safe observable.

From partoos to hadrons
Why don't we see free quarks or gluons? Strictly speaking, this is a question outside the regime of perturbation theory, but we can motivate it in a couple ways.

Color singlets. Free colored particles are not observed, so one quess is that free particles must be color singlets. For example, mesons are (mostly) $9 \overline{9}$ pairs. q is in the 3 -dimasional rep. of suck), and \bar{q} is in its conjugate rep., so we can wite

$$
\begin{aligned}
& \underset{\text { adjoint }}{\text { singlet }} \quad \frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0, \\
& \text { (also called "octet") }
\end{aligned}
$$

Let's compute the force between $u \bar{d}$ pairs in the color singlet stere. 10

$$
\alpha T_{j i}^{a} T_{k l}^{b} \Gamma^{a b}=T_{j i}^{a} T_{k l}^{a}
$$

The sign of the coupling factor tells un it the force is attractive or repulsive: by analogy to QED (and plugging in non-relativistic spines), positive sign is attractive, Labeling colors $|r\rangle,|g\rangle$, and $|1|\rangle$, the octet states are linear combinations of states like $|r \dot{y}\rangle$, and the Singlet state is $\left.\left.\frac{1}{\sqrt{3}}(|r \bar{r}\rangle+19 \bar{j}\rangle+16 \overline{6}\right\rangle\right)$.
If be quacks are in the state $(r \bar{j}\rangle(i=1, k=2)$, compute $T_{j 1}^{a} T_{2 i}^{a} b$, summing over outer product of first colum. times second cow of each Gell-mann matrix:

$$
\begin{aligned}
& \frac{1}{4}\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \times(1,0,0)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \times(1,0,0)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \times(0,-1,0)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times(0,0,0)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times(0,0,0)\right. \\
& \left.\quad+\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \times(0,0,1)+\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \times(0,0,-i)+\frac{1}{3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \times(0,1,0)\right]_{j 1} \\
& =\frac{1}{4}\left[\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]_{j 1}
\end{aligned}
$$

$=\left(\begin{array}{ccc}0 & -\frac{1}{6} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)_{j l}=-\frac{1}{6} \delta_{j 1} \delta_{2 l}$, so final state has same color as initial state (color is conserved). Negative sign means this cartiyuration is repulsive.

A similar computation for $|r \bar{r}\rangle$ sires
$T_{j 1}^{a} T_{11}^{a}=\left(\begin{array}{c}+\frac{1}{3} \\ \\ \\ \\ +\frac{1}{2} \\ +\frac{1}{2}\end{array}\right)$, and summing, ore $|\vec{r} \vec{r}\rangle \rightarrow|r \vec{r}\rangle,|9 \bar{\eta} \geqslant 16 \overline{6}\rangle$ gives a trace; $\frac{1}{3}+\frac{1}{2}+\frac{1}{2}=\frac{4}{3} . \quad\left(\frac{1}{\sqrt{3}}\right)^{2} \times 3 \times \frac{4}{3}=+\frac{4}{3}$, so singlet is afteactie: 91 pairs like fo form color singlets.

A similar analysis holds for baryons: $\epsilon^{i j k} q_{i} q_{j} q_{k}$ is a color singlet, 11 explaining why (colorless) baryons like be proton and neutron have (mostly) 3 quarks. Howere, we shouldn't really trust any of this a a ansis since it's a perturbation series in $\alpha_{\text {s }}$.

Color flux tubes and confinement.
Using nomperturlative methods, can show that at long distances, the QCD potential between $9 \overline{9}$ pairs grows linearly, $V_{q i}(r) \propto C$.
At some scale co, it becomes energetically favorable to pop another 9 9- pair out of the vacuum rather than separate the quark, fourth.

So if we try to separate quarks, we just get more $9 \overline{9}$ colorless mesons. color is confined. By dimensional analysis, $r_{0} \sim m_{\pi}^{-1} \approx(200 \mathrm{meV})^{-1}$.

These color-singlet particles are the Final states of the parton shower: $\pi^{0}, \pi^{ \pm}, \rho$ e etc. Since baron number is conserved in QCO, if we stat with a state with baron number I (es a proton), we have to end with a state with baryon number 1, but we con make any number of mesons in the process.
Next well we will look at low-energy QCD, where the degrees of freedom are mesons instead of quarks and gluons.

