Quantum corrections in QED

The scattering processes we computed last week were analogous to classical processes. for example, Miller scattering can be related to Coulomb scattering in the appropriate limit. This weele, we will look at quantum processes with no classical analogue. At low energies, we will derive the quantum correction to the magnetic moment of the electron. At high energies, we will see how quantum field peony treats photon emission (bremsstrahlung), and how the coupling "constant" actually depends on energy scale (next week).

Let's start first with low energies.

$$
(i \not \varnothing-n) \psi=0 \text {. Multiply on right by }-(i \varnothing p+m) \text { : }
$$

$\left(\varnothing^{2}+n^{2}\right) \psi=0$. D^{2} is a differential operator in spine- space, let's compute it:

$$
\begin{aligned}
\left(\partial_{\mu}\right. & \left.+i e A_{\mu}\right) \gamma^{\mu}\left(\partial_{v}+i e A_{v}\right) \gamma^{v}=\left(\partial_{\mu}+i e A_{\mu}\right)\left(\partial_{v}+i e A_{v}\right) \gamma^{\mu} \gamma^{v} \\
& =\frac{1}{4}\left\{\partial_{\mu}+i e A_{\mu}, \partial_{v}+i e A_{v}\right\}\left\{\gamma^{\mu}, \gamma^{v}\right\}+\frac{1}{4}\left[\partial_{\mu}+i e A_{\mu}, \partial_{v}+i e A_{v}\right]\left[\gamma^{\mu}, \gamma^{v}\right]
\end{aligned}
$$

where $[A, B]=A B-B A$ and $\{A, B\}=A B+B A$
First term can be simplified using $\left\{r^{\mu}, r^{\nu}\right\}=2 \eta^{\mu \nu}$, so

$$
\frac{1}{4}\left\{\partial_{\mu}+i e A_{\mu}, \partial_{\nu}+i e A_{\nu}\right\}\left\{\gamma^{m}, r^{\eta}\right\}=\frac{1}{2}(2)\left(\partial_{\mu}+i e A_{\mu}\right)\left(\partial^{\mu}+i e A^{\mu}\right) \equiv D^{2} \text { (scalar operator) }
$$

Second tern: $\left[\partial_{\mu}+i e A_{m}, \partial_{v}+i e A_{v}\right]=\partial_{\mu} \partial_{v}+i e \partial_{\mu} A_{v}+i e \not A_{v} \partial_{\mu}+i e \not A_{n} \partial_{v}-e^{2} A_{\mu} / A_{v}$

$$
-\partial, \partial_{\mu}-i e \partial_{v} A_{\mu}-i e \partial_{\mu} \partial_{v}-i C A / \partial_{\mu}+e^{2} A_{\mu} A_{v}
$$

$$
=\text { ie } F_{m v} \text { (recall un die this in week 3) }
$$

Recall from Hi 2 that $\frac{i}{4}\left[\gamma^{n}, \gamma^{v}\right]=S^{\mu v}$, De Locate generators actors on spines.

So $D^{2}=D^{2}+e F_{N v} S^{m v}$, and Dirac equation coupled to a gauge fred 2 implies $\left(D^{2}+n^{2}+e F_{m} S^{n v}\right) \psi=0$.

$$
\begin{aligned}
& F_{o i}=E_{i}, F_{i j}=-\epsilon_{i j k} B_{k}, s_{0} \\
& \left\{D^{2}+m^{2}-e\binom{(\vec{B}+i \vec{E}) \cdot \vec{\sigma}}{(\vec{B}-i \vec{E}) \cdot \vec{\sigma}}\right\} \psi=0
\end{aligned}
$$

$\left(D^{2}+m^{2}\right) \varnothing$ is the K(ein-Gordon equation for a charged scalar \& coupled to a gauge field. The $S^{m v}$ term is unique to spinous: then have a magnetic moment! You will see has in more detail in How (ts Schumtz 10.1). for a non-relativistic Hamilturime $H=g \frac{e}{2 m} \vec{B} \cdot \vec{s}$, the coefficient of $\frac{e}{4} F_{r v} \sigma^{\sim v}$ (where $\sigma^{\sim v}=\frac{i}{2}\left[r^{j}, r^{\nu}\right]=2 s^{n v}$) gives g. Dirac equation predicts $g=2$, QED says $g=2+\frac{\alpha}{\pi}+\ldots=2.00232 \ldots$
Let's redeive $g=2$ using Feynman diagrams.
$i \mu^{\mu}=\left\{p=-i e \bar{u}\left(q_{2}\right) r^{m} u\left(q_{1}\right)\right.$. we enforce momentum conservation by $p=q_{2}-q_{1}$, but do not require $p^{2}=0$, since the photon may not be on-stell (indeed, static B-fields lon't propagate)
Note (hat $\bar{u}\left(q_{2}\right) \sigma^{\mu v}\left(q_{2} q_{1}\right)_{v} u\left(q_{1}\right)=\frac{i}{2} \bar{u}\left(q_{2}\right) \gamma^{\mu} \gamma^{v}\left(q_{2} \bar{q}_{1}\right)_{v} u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(q_{2}\right) r^{v} r^{\mu}\left(q_{2}-q_{1}\right)_{v} u\left(q_{1}\right)$

$$
=\frac{i}{2} \bar{u}\left(a_{2}\right) r^{m}\left(q_{2}-q_{1}\right) u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(a_{2}\right)\left(q_{2}-x_{1}\right) \gamma^{\omega} u\left(a_{1}\right)
$$

Spinuri are on-stell, so they satisfy the Dirac equation $\left(d_{1}-m\right) u\left(q_{1}\right)=\bar{u}\left(a_{2}\right)\left(q_{2}-m\right)=0$

$$
\Rightarrow \frac{i}{2} \bar{u}\left(q_{2}\right) r^{m}\left(q_{2}-m\right) u\left(q_{1}\right)-\frac{i}{2} \bar{u}\left(q_{2}\right)\left(m-q_{1}\right) r^{m} u\left(q_{1}\right)
$$

Anticomunte \mathscr{g}_{2} to left: $r^{\mu} \mathscr{g}_{2}=-g_{2} r^{\mu}+2 q_{2}^{\mu} \cdot \bar{u}\left(q_{2}\right) g_{2}=n \bar{u}\left(q_{2}\right)$.
Similar manipulation on second term gives

$$
\bar{u}\left(q_{2} \sigma^{n v}\left(q_{2}-q_{1}\right)_{v} u\left(q_{1}\right)=i \bar{u}\left(q_{2}\right)\left(q_{1}+q_{2}\right)^{m} u\left(q_{1}\right)-\operatorname{im} \bar{u}\left(q_{2}\right) r^{\mu} u\left(q_{1}\right)\right.
$$

So we can rewrite the QED vertex as

$$
i M^{\mu}=-\frac{i e}{2 m}\left(q_{1}+q_{2}\right)^{n} \bar{u}\left(q_{2}\right) u\left(q_{1}\right)+\frac{e}{2 m} \bar{u}\left(q_{2}\right) \sigma^{\mu v} p_{v} u\left(q_{1}\right)
$$

This is just $F_{v v} \sigma^{n v}$
in roneturn space: $\partial_{v} A_{\mu} \rightarrow-i \rho_{v} t_{\mu}$
\Rightarrow any amplitude of the form $\bar{u}\left(q_{2}\right) \sigma^{n v} p_{v} u\left(q_{1}\right)$ contributes to g.
Here is the next contribution:

$$
i \mu=
$$

This is our first example of a loop diagram. It follows all the usual Feynman rules, except there is one undetermined momentum k, over which we integrate $\int \frac{d^{4} k}{(2 \pi)^{4}}$

This diagram has two additional QED vertices, so it is proportional to a times the $\frac{e}{m}$ from the Dirac contribution.
Write down the amplitude, proceeding balkuads, along fermion lines:

$$
i \mu=(-i e)^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \bar{u}\left(q_{2}\right) \frac{r^{v}\left(-i \eta_{v \alpha}\right)}{\left(k-q_{1}\right)^{2}} \frac{i(p+k+m)}{(p+k)^{2}-n^{2}} \gamma^{m} \frac{i(k+m)}{k^{2}-m^{2}} r^{\alpha} u\left(q_{1}\right)
$$

(factor out constants arr spinous) $=-e^{3} \bar{u}\left(q_{2}\right)\left[\int \frac{d^{4} k}{(2 \pi)^{r}} \frac{r^{v}(p+k+m) r^{m}(k+m) r_{v}}{\left(k-q_{1}\right)^{2}\left(\left(p+k^{2}\right)^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)}\right] u\left(q_{1}\right)$
There are a standard set of tricks for evaluating this kind of integral:

- Combine the 1 denominators into the form $\frac{1}{\left(k^{2}-\Delta\right)^{n}}$, at the expose of an interval over auxiling Feynman parameters.
- Use spherical symmetry to drop terns with old powers of k.
- Use standard identifies for spherical volumes in 4 dimensions, leaving on an ordinary integral $\int \frac{k^{e} d k}{\left(k^{2}-\Delta\right)^{N}}$ times some r matrices.
We will outline the calculation here, you'll fill in the details for HW.
A First, we need the identity $\frac{1}{A B C}=2 \int_{0}^{1} d x d y d z \int(x+y+z-1) \frac{1}{[x A+y B+z C]^{3}}$.
Here, $A=k^{2}-m^{2}, \quad B=(p+k)^{2}-m^{2}, C=(k-q,)^{2}$

$$
\begin{aligned}
x A+y B+2 C & =x k^{2}-x m^{2}+y p^{2}+2 y p \cdot k+y k^{2}-y m^{2}+2 k^{2}-22 k \cdot \eta_{1}+z q_{1}^{2} \\
& \left.=k^{2}+2 k \cdot\left(y p-2 q_{1}\right)+y p^{2}+2 q_{1}^{2}-(x+y) m^{2} \quad \text { (using, } x+s+z=1\right)
\end{aligned}
$$

Complete the square: $\left(k_{\mu}+y p_{m}-2 q, \mu\right)^{2}=k^{2}+2 k \cdot(y p-2 q)+y^{2} p^{2}+z^{2} \eta_{1}^{2}-2 y 2 p-q$, So $\times A \operatorname{rab}+2 C=\left(k_{\mu}+y p_{n}-2 q_{1, n}\right)^{2}-\Delta$ where $\Delta=\left(y^{2}-y\right) p^{2}+\left(z^{2}-z\right) q_{1}^{2}$

$$
-2 y 2 p \cdot q_{1}+(x+y) n^{2}
$$

- Use $q_{1}^{2}=m^{2} ;\left(z^{2}-z\right) n^{2}+(x+y) n^{2}=\left(2^{2}-z+(1-z)\right) n^{2}=(1-z)^{2} n^{2}$
- Use $p=q_{2}-q_{1}:\left(p+q_{1}\right)^{2}=q_{2}^{2}, p^{2}+2 p \cdot q_{1}+m^{2}=n^{2} \Rightarrow 2 p \cdot q_{1}=-p^{2}$

$$
\left(y^{2}-y\right) p^{2}+y z p^{2}=\left(y^{2}-y+y(x-x-y)\right) p^{2}=-x y p^{2}
$$

So $\Delta=-x y p^{2}+(1-z)^{2} n^{2}$
(Large variables to $k^{\prime}=k+y p-2 q$, denominator- is now $\left(k^{\prime 2}-\Delta\right)^{3}$.
This chare of variables has mit Jacobian: $d^{4} k^{\prime}=d^{5} k$

* Perform this shift in the numerator $N^{\mu}=\gamma^{v}(p+x+m) \gamma^{m}(x+m) r_{v}$, do lots of algebra using Gordon ilentify and $x+y+2=1$ to get

$$
\bar{u}\left(q_{2}\right) N^{\mu} u\left(q_{1}\right)=\bar{u}\left(q_{2}\right) \sigma^{n v} p_{v} u\left(q_{1}\right) \times i(-2 n) 2(1-2)+\ldots
$$

this is be piece
we wanted
Normalizing by $\frac{e}{2 m}$, in e contribution to g (convatioall's called F_{2}) is

$$
\begin{aligned}
& F_{2}\left(p^{2}\right)=\frac{2 n}{e}\left(4 i e^{3} n\right) \int_{0}^{1} d x d y d z z(1-z) \delta(x+y+z-1) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{1}{\left[k^{\prime^{2}}-\Delta\right]^{3}} \\
& 2 \text { from clef., }
\end{aligned}
$$

* to see how we deal with the other pieces of N^{M}, take QFT!

Note that Δ depends on $x, y, 2$ se we have to do $\int l^{4} k^{\prime}$ integral first. $k^{\prime 2}$ is a Lorentzian dot product, while we would prefer a Euclidean dot product to do he integral in spherical coordinates.

Ore subtlety from QFT: all propagators have an infthiksimal positive imaginary part. In the $k^{\prime o}$ plane, this pushes the poles off the real axis: $\left(k^{\prime}\right)^{2}-\Delta+i \epsilon=0 \Rightarrow k^{\prime 0}= \pm \sqrt{\bar{k}^{\prime 2}+\Delta} \mp i \epsilon$

Can rotate integration contr $k^{\prime 0} \rightarrow i k^{\prime 0}$ without hitting ans poles: Wick rotation

Define Euclidean 4 momentum $\vec{k}_{E}=\left(i k^{0 \prime}, \vec{k}\right)$ s.t. $k^{\prime 2} \rightarrow-k^{0^{\prime 2}}-k^{2}=-k_{E}^{2}$

$$
\begin{aligned}
& \Rightarrow \int \frac{d^{4} k^{\prime}}{(2 \pi)^{+}} \frac{1}{\left[k^{\prime 2}-\Delta\right]^{3}}=\frac{-i^{\text {dacosion }} \mathrm{p}^{2}-\boldsymbol{\text { factoring out }}}{(2 \pi)^{4}} \int d^{4} k_{E} \frac{1}{\left(k_{E}^{2}+\Delta\right]^{3}} \\
& =\frac{-i}{32 \pi^{2}} \frac{1}{\Delta} \\
& \text { ordinary splericaly-symmetric } \\
& 4 \text {-dimasional integral }
\end{aligned}
$$

The magnetic moment is a low-enery pheromeran \Rightarrow take $p^{2} \ll n^{2}$,

$$
\begin{aligned}
& \Delta=(1-z)^{2} n^{2} \text { as } \rho^{2} \rightarrow 0 \\
& F_{2}(0)=\frac{e^{2}}{4 \pi^{2}} \int_{0}^{1} d x d y d z \frac{2}{1-2} \delta(x+y+z-1)=\frac{e^{2}}{8 \pi^{2}}=\frac{\alpha}{2 \pi}
\end{aligned}
$$

So finally, $q=2\left(1+F_{2}(0)\right)=2+\frac{\alpha}{\pi}+\theta\left(\alpha^{2}\right)$
Continuing to many orders in α, this is the most precise comparison between theory and experiment that humanity has ever made. However, it work, for the electron but not for de muon? There is a 3σ discrepancy for g_{μ} which is currently being actively investigated by experimentalists (9-2 at Fermilab) and Deorists (lattice QCD contributions? new particles?) - results in weeks!!

