The scattering processes we computed last week were analogous to classical processes: for example, Möller scattering can be related to Coulomb scattering in the appropriate limit. This week, we will look at quantum processes with no classical analogue. At low energies, we will derive the quantum correction to the magnetic moment of the electron. At high energies, we will see how quantum field theory treats photon emission (bremsstrahlung), and how the coupling "constant" actually depends on energy scale (next week).

Let's start first with low energies.

$$(\not \! q - m) \psi = 0.$$ Multiply on right by $-(i \not \! D + m)$:

$$(\not \! D^2 + m^2) \psi = 0.$$ $\not \! D^2$ is a differential operator in spinor space, let's compute it:

$$(\partial_m + i e A_m) Y^m (\partial_n + i e A_n) Y^n = (\partial_m + i e A_m)(\partial_n + i e A_n) Y^m Y^n$$

$$= \frac{1}{4} \left([\partial_m + i e A_m, \partial_n + i e A_n] [Y^m, Y^n] + \frac{1}{4} [\partial_m + i e A_m, \partial_n + i e A_n] [Y^m, Y^n] \right)$$

where $[A,B] = AB - BA$ and $[eA,B] = AB + BA$

First term can be simplified using $\{Y^m, Y^n\} = 2 g^{mn}$, so

$$\frac{1}{4} \left([\partial_m + i e A_m, \partial_n + i e A_n] [\delta^m_n, \delta^n_m] \right) = \frac{1}{4} \left(2 \delta^m_n \right)(\delta^m_n + i e A_n) \equiv D^2 \ (\text{scalar operator})$$

Second term:

$$[\partial_m + i e A_m, \partial_n + i e A_n] = \partial_m \partial_n + i e A_m \partial_n + i e A_n \partial_m - e^2 [A_m, A_n]$$

$$= i e F_{mn} \ (\text{recall we did this in Week 3})$$

Recall from HW 2 that $\frac{1}{4} \{Y^m, Y^n\} = g^{mn}$, the Lorentz generators act on spinors.
So \(\mathcal{D}^2 = D^2 + e F_{\mu\nu} S^\mu\nu \), and Dirac equation coupled to a gauge field \(\mathcal{D}^2 \) implies \((D^2 + m^2 + e F_{\mu\nu} S^\mu\nu)\psi = 0 \).

Writing it out explicitly, \(S^\mu = -\frac{i}{2} (\sigma^\mu - i\gamma^\mu) \) and \(S^{ij} = \frac{i}{2} \epsilon^{ijk} (\sigma^k - i\gamma^k) \).

\(F_{\alpha\beta} = E_i \), \(F_{ij} = -\epsilon_{ijk} B_k \), so

\[
(D^2 + m^2 - e (\vec{B} + i \vec{E}) \cdot \vec{\sigma} (\vec{B} - i \vec{E}) \cdot \vec{\sigma}) \psi = 0
\]

\((D^2 + m^2)\phi \) is the Klein-Gordon equation for a charged scalar \(\phi \) coupled to a gauge field. The \(S^\mu \) term is unique to spinors; they have a magnetic moment! You will see this in more detail in HW (B. Schumak12):

For a non-relativistic Hamiltonian \(H = g \frac{e}{2m} \vec{B} \cdot \vec{\sigma} \), the coefficient of

\[
\frac{e}{4} F_{\mu\nu} \sigma^{\mu\nu} \) (where \(\sigma^{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu] = 2 \epsilon^{\mu\nu\sigma\tau} \)) gives \(g \). Dirac equation predicts \(g = 2 \). QED says \(g = 2 + \frac{\alpha}{\pi} + \ldots = 2.00232 \ldots \)

Let's rederive \(g = 2 \) using Feynman diagrams.

\(\mathcal{M} = \frac{5}{3} \hbar \) by \(p = p_1 - p_2 \), but do not require \(p^2 = 0 \), since the photon may not be on-shell (indeed, static B-fields don't propagate).

Note that \(\overline{\psi}(q_2) \sigma^{\mu\nu}(q_2 - q_1) \psi(q_1) = \frac{i}{2} \overline{u}(q_2) \gamma^\mu \gamma^\nu (q_2 - q_1) u(q_1) - \frac{i}{2} \overline{u}(q_2) \gamma^\nu \gamma^\mu (q_2 - q_1) u(q_1) \)

\(= \frac{i}{2} \overline{u}(q_2) \gamma^\mu (q_2 - q_1) u(q_1) - \frac{i}{2} \overline{u}(q_2) (q_2 - q_1) \gamma^\nu u(q_1) \)

Spinors are on-shell, so they satisfy the Dirac equation \((\gamma^\mu - m) u(q_1) = \overline{u}(q_2) (q'_2 - m) = 0 \)

\(\implies \frac{i}{2} \overline{u}(q_2) \gamma^\mu (q_2 - m) u(q_1) - \frac{i}{2} \overline{u}(q_2) (m - q^\mu_2) \gamma^\mu u(q_1) \)

Anticommuting \(\gamma^\mu \) to \(\epsilon^{\mu\nu}\gamma_2 = -\gamma^\nu \gamma^\mu + 2 q^\mu \). \(\overline{u}(q_2) \gamma^\mu = m \overline{u}(q_2) \)

Similar manipulation on second term gives

\[
\overline{u}(q_2) \sigma^{\mu\nu}(q_2 - q_1) \psi(q_1) = i \overline{u}(q_2)(q_1, m)^\dagger u(q_1) - 2 i m \overline{u}(q_2) \gamma^\mu u(q_1)
\]
So we can rewrite the QED vertex as

\[iM^\gamma = -ie (q_1+q_2)^\gamma \bar{u}(q_2) u(q_1) + \frac{e}{2M} \bar{u}(q_2) \sigma^{\mu\nu} p_\nu u(q_1) \]

This is just \(F_{\mu\nu} \) in momentum space: \(d\mathbf{A} \rightarrow -ip_\mu \mathbf{A} \nabla \)

implies any amplitude of the form \(\bar{u}(q_2) \sigma^{\mu\nu} p_\nu u(q_1) \) contributes to \(g \).

Here is the next contribution:

\[
\begin{tikzpicture}
 \draw (0,0) -- (1,1) -- (2,0) -- (0,0);
 \node at (0.5,0.5) {p};
 \node at (1,1) {$p+k$};
 \node at (2,0) {k};
 \node at (0,0) {q_1};
 \node at (2,0) {q_2};
 \draw (0.5,0) -- (0.5,-0.5);
\end{tikzpicture}
\]

This is our first example of a loop diagram. It follows all the usual Feynman rules, except there is one undetermined momentum \(k \), over which we integrate \(\int \frac{d^4k}{(2\pi)^4} \).

Write down the amplitude, proceeding backwards along fermion lines:

\[iM = (-ie)^3 \int \frac{d^4k}{(2\pi)^4} \bar{u}(q_2) \gamma^\nu (-ig\gamma\lambda) \frac{\gamma^\mu (p+k+m)}{(p+k)^2-m^2} \frac{i(p+k+m)}{(k^2-m^2)} \int \frac{d^4k}{(2\pi)^4} \gamma^\nu (p+k+m) \gamma^\alpha (k+m) \gamma_\mu u(q_1) \]

(Factor out constants and spinors)

\[(-e^3 \bar{u}(q_2) \left(\int \frac{d^4k}{(2\pi)^4} \frac{\gamma^\nu (p+k+m) \gamma^\alpha (k+m) \gamma_\mu u(q_1)}{(k^2-m^2)^2} \right) u(q_1) \]

There are a standard set of tricks for evaluating this kind of integral:

- Combine the \(n \) denominators into the form \(\frac{1}{(k^2-\Delta)^n} \) at the expense of an integral over auxiliary Feynman parameters.
- Use spherical symmetry to drop terms with odd powers of \(k \).
- Use standard identities for spherical volumes in 4 dimensions, leaving only an ordinary integral \(\int \frac{k^4 \, dk}{(k^2-\Delta)^n} \) times some \(\gamma \) matrices.

We will outline the calculation here, you'll fill in the details for HW.
First, we need the identity \(\frac{1}{ABC} = 2 \int_0^1 dx_3 \int_0^1 dx_2 \int_0^1 \delta(x+y+z-1) \int_0^1 \frac{1}{(2\pi)^3} \). Here, \(A = k^2 - m^2, B = (\rho k)^2 - m^2, C = (k-\eta)^2 \)

\[
X_A + Y_C + Z_C = x_k^2 - x_m^2 + y_k^2 + 2y_k y_\eta - y_\eta^2 + 2 k^2 - 2k x_\eta + z q_1^2
\]

\[
= k^2 + 2k(y_\eta - z q_1) + y_\eta^2 + 2q_1^2 - (xy) m^2 \quad \text{(using } x+y+z=1)\]

Complete the square: \((k^2 + y_\eta^2 - z q_1^2) = k^2 + 2k(y_\eta - z q_1) + y_\eta^2 + 2q_1^2 - (xy) m^2 \)

So \(X_A + Y_B + Z_C = (k^2 + y_\eta^2 - z q_1^2) = \Delta \) where \(\Delta = (y^2 - y) p^2 + (z^2 - z) q_1^2 - 2y^2 - 2p q_1 + (xy) m^2 \)

- Use \(q_1 = m^2 \); \((2\omega - 2) m^2 = (2\omega - 2(1-z)) m^2 = (1-z) m^2 \)
- Use \(\rho = q_2 - 2z \); \((\rho^2 - 2q_2) + 2p q_1 + m^2 = 0 \Rightarrow 2p q_1 = -\rho^2 \)

\[
(y^2 - y) p^2 + (z^2 - z) q_1^2 - 2y^2 - 2p q_1 + (xy) m^2 = -\rho^2
\]

So \(\Delta = -\rho^2 + (1-z) m^2 \)

Change variables to \(k' = k + y_\eta - z q_1 \), denominator is now \((k' - \Delta)^3 \).

This change of variables has unit Jacobian: \(d^2 k' = d^2 k \)

Performing this shift in the numerator \(\partial_x \rho(x_k \eta, \eta) \partial_x \rho(x_k \eta, \eta) \)

do lots of algebra using Gordon identity and \(x+y+z=1 \) to get

\[
\bar{u}(q_2) N^m u(q_1) = \bar{u}(q_2) \delta(x_m p) \delta(x_m) x(-2m) (1-z) + \ldots \quad \ast
\]

this is the piece we wanted

Normalizing by \(\frac{1}{2m} \), the contribution to \(g \) (conv. called \(F_x \)) is

\[
F_x(\rho) = \frac{2m}{2} (4\pi e^3 m) \int_0^1 dx_3 \int_0^1 dx_2 \int_0^1 \delta(x+y+z-1) \int_0^1 \frac{d^4k'}{(2\pi)^4} \frac{1}{(k' - \Delta)^3}
\]

\(\ast \) to see how we deal with the other pieces of \(N^m \), take QFT!
Note that Δ depends on x, y, z so we have to do $\int d^4k'$ integral first. k'^2 is a Lorentzian dot product, while we would prefer a Euclidean dot product to do the integral in spherical coordinates.

One subtlety from QFT: all propagators have an infinitesimal positive imaginary part. In the k^0 plane, this pushes the poles off the real axis: $(k')^2 - \Delta + i \epsilon = 0 \Rightarrow k^0 = \pm \sqrt{k'^2 - \Delta} + i \epsilon$

Define Euclidean 4-momentum $k_E^0 = (i k^0, k^i)$ s.t. $k^2 = -k'^2 - k^2 = -k_E^2$

\[
\Rightarrow \int \frac{d^4k'}{(2\pi)^4} \frac{1}{[k'^2 - \Delta]} = -\frac{i}{(2\pi)^4} \int d^4k_E \frac{1}{[k^2 + \Delta]^3} = \frac{-i}{32\pi^4} \frac{1}{\Delta}
\]

The magnetic moment is a low-energy phenomenon \Rightarrow take $p^2 \ll m^2$

$\Delta = (1 - z)^2 m^2$ as $p^2 \to 0$

\[
F_z(0) = \frac{\vec{e}}{4\pi} \int_0^1 dx dy dz \frac{2}{1 - 2} \int (x + y + z - 1) = \frac{\vec{e}}{8\pi^2} = \frac{\alpha}{2\pi}
\]

So finally, $g = 2(1 + F_z(0)) = \frac{2 + \frac{\alpha}{\pi} + \theta(\alpha^2)}{\pi}$

Continuing to many orders in α, this is the most precise comparison between theory and experiment that humanity has ever made.

However, it works for the electron but not for the muon!

There is a 30 discrepancy for g_μ which is currently being actively investigated by experimentalists ($g - 2$ at Fermilab) and theorists (lattice QCD contributions? new particles?) - results in weeks!