Intro to group theory and So $(3,1)$
Observations (mary!) tell us physics is invariant win respect to Lorentz transformations. Therefore, ow goal is to describe elementary particles in a Lorentz-invoriant way.

An elementary particle is an irreducible represutation of The Poincare group - a semidicet product of the Lorentz group and the group of spacetime translations classified by its two Casimir inveriants, mass and spin. If the particle is charged, it is an irreducible representation of an additional internal symmetry, global or gauged

Over the next 3 week, we will learn what all these no rds mean.

Groups, a collection of objects with on a ssoluative multiplication race satisting
a) idutity; $I M=M I=M$ for any $M \in G$ and some specific $I \in G$
6) incuse: for any $M \in G$, there exists M^{-1} in 6 such that $M M^{-1}=I$
c) closure: if $M, M^{\prime} \in G$, then $M M^{\prime} \in G$

Notice multiplication is not necessarily commutative: MN $=\mathrm{NM}$ in geneal

Representation: a map $G \rightarrow M_{a t_{n \times n}}$. Elements of $G \mathrm{can}$ then act on vectors in the vector space \mathbb{R}^{n} by matrix multiplication

Claim: Lorentz transtometions form a group, which we call So $(3,1)$

Two mas to see this:

1) explicit calculation (compose fur boosts and see you can get another boost, etc) - [1HW]
2) be more abstract and clever

Define $S O(3,1)$ as the set of 4×4 real matrices M Satisfying $\eta M^{\top} \eta M=\mathbb{1}$, with $\eta=\left(\begin{array}{lll}1 & & \\ -1 & & \\ & -1 & \\ & & -1\end{array}\right)$ and $\mathbb{1}=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & 1 & 1\end{array}\right)$
Check this makes sense. boost along x-axis is

$$
\begin{aligned}
& M_{r}^{(r)}=\left(\begin{array}{cccc}
r & -v \beta & 0 & 0 \\
-v \beta & r & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), M_{r}^{() T}=\left(\begin{array}{cccc}
r & -r \beta & 0 & 0 \\
-v n & r & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(=M_{r}^{(x)}\right) \\
& \eta M=\eta M^{\top}=\left(\begin{array}{cccc}
V & -v m & 0 & 0 \\
v n & -v & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& \eta M^{\top} \eta M=\left(\begin{array}{llll}
\nu^{2}-r^{2} \beta^{2} & & & \\
& r^{2}-\gamma^{2} \rho^{2} & & \\
& & & 1 \\
& & & \\
& & & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right) \text { since } \\
& V^{2}\left(1-\beta^{2}\right)=\frac{1}{1-\beta^{2}}\left(1-\beta^{2}\right)=1
\end{aligned}
$$

isatin: $M=\mathbb{1} \Rightarrow \eta m^{+} \eta M=\eta \mathbb{1} \eta \mathbb{1}=\mathbb{1}$
inure: M^{-1} is an inverse to M as long as $M^{-1} \in S O(3,1)$. Let's pare this:

$$
\mathbb{1}=\left(\eta M^{\top} \eta M\right)^{-1}=M^{-1} \eta^{-1}\left(m^{\tau}\right)^{-1} \eta^{-1}=\eta^{-1} \eta\left(m^{-1}\right)^{\top} \eta
$$

Lift - multiph by M, rightemultipls by m^{-1} :

$$
\begin{aligned}
\underbrace{M \mathbb{I} M^{-1}}_{=\mathbb{I}} & =M\left(M^{-1} \eta\left(M^{-1}\right)^{\top} \eta\right) M^{-1} \\
& =M\left(m^{-1}\right)^{\top} \eta M^{-1} \text { So } M^{-1} \text { is in } 50(3,1)
\end{aligned}
$$

(closure: [HW]

These 4×4 matrices are also a representation of the group: Since they were used to define the group, we call it n de defining representation. It acts on 4-vectors x^{v} as $\eta_{v}^{\mu} x^{v}$ What about other representations?

- Trivial representation: All elements of So 3,1) map to re number 1. This is be "do-nothing" representation and acts on scalars (numbers)
-What about acting on 2 -component vectors? 3-componet?
To do this systematically, we seed the concept of Lie algebras. These are another mathematical collection of objects obtained fran a group by looking at gray elements infinitesimally close to the identity.

Letha try writing $M=11+\in X$ and expand to first ode in t.

$$
\mathbb{1}=\eta(\mathbb{1}+\epsilon x)^{\top} \eta(\mathbb{1}+\epsilon x)=\underset{\mathbb{1}}{\eta^{2}}+\epsilon\left[\eta x^{\top} \eta+\eta^{2} x\right]+\theta\left(\epsilon^{2}\right)
$$

$\Rightarrow \eta x^{\top} \eta=-x$ defines Lie algebra so $(3,1)$
Dimension easiest to compare to $x^{\top}=-x$, which defines an antisymmetric matrix:

$$
\left(\begin{array}{cc}
x_{x}^{x} x \\
0 & x \\
0 & x \\
0
\end{array}\right)<6 \text { prancers }
$$

Unlike SO (3,1), so $(3,1)$ does not have a multiplication rule.
It is, however, a rector space: if $x, y \in$ so $(3,1)$, then $a X+b y \in D O(3,1)$ for any real numbers a, b.

It has one additional ingredient, called the Lie bracket:
if $x, y \in \operatorname{so}(3,1)$, then $[x, y] \equiv x y-y x \in \operatorname{so}(3,1)$
Proof: $\eta(x y-y x)^{\top} \eta=\eta\left(y^{\top} x^{\top}-x^{\top} y^{\top}\right) \eta$

$$
\begin{aligned}
& =\eta y^{\top} \eta \eta X^{\top} \eta-\eta X^{\top} \eta \eta y^{\top} \eta \\
& =(-y)(-x)-(-x)(-y) \\
& =-(x y-y x)
\end{aligned}
$$

Since taking brackets keeps us in the Vie algebra, we con choose a basis T^{i} and mite $\left[T^{i}, T^{j}\right]=f^{i j k} T^{k}$, where fijk are called structure constants, and the whole equation is a commutation relation.

Fur so(3,1), it's easiest to split the basis in to infinstesime (boosts and in finitesinal rotations, and to allow ourselves complex coefficients

Let $\vec{J} \equiv\left(J_{x}, J_{y}, J_{z}\right)$ be infinitesimal rotations around x, y, ad z axes respectively, Ex. $J_{x}=i\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad[H W]$
$\vec{K} \equiv\left(K_{x}, K_{y}, K_{2}\right)$ are infinitesimal boosts a bang $x, y, 2$

$$
\text { Ex. } k_{x}=i\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

boost directing is a 3-vecto-

Commutation relations: $\left.\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k},\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k}\right]_{k},\left[j_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}$ look familiar? two boosts give a rotariby, HW

The fact that J and K get mixed with each other is annoying. But un have one more trick up ow sleeve: defame a new basis

$$
\vec{A}=\frac{\vec{J}+i \vec{k}}{2}, \quad \vec{B}=\frac{\vec{J}-i \vec{k}}{2}
$$

In this basis the commutation relations are

$$
\left[A_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}, \quad\left[B_{i}, B_{j}\right]=i \epsilon_{i j k} B_{k}, \quad\left[A_{i}, B_{j}\right]=0
$$

two identical copies of the same
Lie algebra which don't mix.'
So representation theory of so $(3,1)$ boils down to representation theory of A and B.

But you already, know the answer from quantum mechanics!
Id rep: $A_{i} \equiv \sigma_{i}$, Pauli matrices (spin $\left.-\frac{1}{2}\right)$
Id rep: $A_{i} \equiv$ infinitesimal $3 d$ rotations (api n-1)
using raising and lowering operators, can have any half-integcer spin representation of dimension $2 j+1$
\Rightarrow Pick a half-intege j_{1}, and mother half-integer \dot{u}_{2}, and You have defined a rep. $\left(j_{1}, j_{2}\right)$ of the Lorentz group with dimension $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$. j_{2}

