Intro to group theory and So(3,1)

Observations (many!) tell us physics is invalant with respect to Lorentz transformations. Therefore, our goal is to describe elementary particles in a Lorentz-invalant way.

Over the next 3 weeks we will learn what all these words mean.

Note multiplication is not necessarily commutative; MN ZNM in general

Representation: a map 6 - Mataxa. Elements of G can then act on vectors in the vector space IRⁿ by matrix multiplication

Two ways to see this;

1) explicit calculation (compose two boosts and see you can get another boost, etc.) - [I+W]

Define
$$SD(3,1)$$
 as the set of 4×4 real matrices M
Satisfying $[MMMM = 1]$, with $\eta = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ and $\underline{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Check this makes sense, boost along x-axis is

$$\begin{array}{c}
\eta M \Gamma \eta M = \begin{pmatrix} v^{2} - v^{2} \beta^{2} \\ \gamma^{2} - v^{2} \beta^{2} \\ & & | \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ & & | \end{pmatrix} \quad \text{Since}$$

 $Y^{*}(HB^{*}) = \frac{1}{1-B^{*}}(HB^{*}) = 1$ idulity! $M = I = 7 g M^{*} M = g I g I = I$ inverse! M^{-1} is an inverse to M as long as $M^{-1} E So(3, 1)$. Let's powe this! $I = (g M^{*} g M)^{-1} = M^{-1} g^{-1} (M^{*})^{-1} g^{-1} = M^{-1} g (M^{-1})^{*} g$

Left - multiply by
$$M$$
, right-multiply by M^{-1} ;
 $M \coprod M^{-1} = M(M^{-1} \eta (M^{-1})^{T} \eta) M^{-1}$
 $= \Pi = \eta (M^{-1})^{T} \eta M^{-1}$ So M^{-1} is in SO(3,1)
(losure: (HW))

These 4x4 matrices are also a representation of the group: since they were used to define the group, we call it the defining representation. It acts on 4-vectors x' as M'v x' What about other representations?

 Trivial representation. All elements of SO(3,1) map to Ne number 1. This is the "do-nothing" representation and acts on scalars (numbers)

Let's try writing
$$M = \underline{1} + E \times$$
 and expand to First order in E .

$$\underline{1} = \eta (\underline{1} + E \times)^T \eta (\underline{1} + E \times) = \eta^T + E [\eta \times^T \eta + \eta^T \times] + \theta(E^2)$$

$$\underbrace{1}_{\underline{1}}$$

$$= \underbrace{M \times^T \eta = -X}_{\underline{1}} \quad defines \quad Lie \quad algebra \quad Do(3,1)$$
Dimension: Casiest to compare to $\times^T = -X$, which defines an antisymmetric matrix:

$$\begin{pmatrix} 0 & k \times X \\ 0 & 0 \end{pmatrix} \times 6 \quad parameters$$

)

Unlike
$$SO(3,1)$$
, $SO(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $X, Y \in SO(3,1)$, then
 $a X + 6 Y \in SO(3,1)$ for any real numbers $a, 6$.
It has one additional ingredient, called the Lie bracket:
 $i F X, Y \in BO(3,1)$, then $[X, Y] \equiv XY - YX \in BO(3,1)$
 $Prob F: q(XY - YX)^T q = q(Y^T X^T - X^T Y^T) q$
 $= q Y^T q q X^T q - q X^T q Y^T q$
 $= (-Y)(-X) - (-X)(-Y)$
 $= -(XY - YX) \sqrt{10}$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

$$F_{\text{Ex}} = \left\{ \begin{array}{c} 0 - 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right\}$$

(ommutation relations. [Ji, Jj]=iEijk Jn, [K:, K;]=-iEijk Jk, [Ji, K;]=iEijk Kk look familia? two boosts give a rotation i HW

The fact that J and K get mixed with each other is analyse.
But we have one more trick up our sleeve: define a new basis

$$\overline{A} = \frac{J+iR}{2}$$
, $\overline{B} = \frac{J-iR}{2}$
In this busis the commutation relations are
 $[A_{i}, A_{j}] = iE_{ijk}A_{k}$, $[B_{i}, B_{j}] = iE_{ijk}B_{k}$, $[A_{i}, B_{i}] = 0$
two identical copies of the same
Lie algebra which don't mix?
So representation theory of do(3,1) boils down to representation theory
of A and B.
Pluet you already from the assure from ghantum mechanics!
2 d rep: $A_{i} \equiv \sigma_{i}$, faulti matrices $(spin - \frac{1}{2})$
3 d rep: $A_{i} \equiv infinitesimal 3d$ rotations $(spin - 1)$
:
Using raising and lowering operators, Can have any half-integer
Spin representation of dimension $2i+1$
=7 Pick a half-integer j_{i} and another half-integer σ_{i} , and
you have defined a rep. (j_{i}, j_{k}) of the Lorate grap with
 $dirension (2j_{i}-1)(2j_{k}+1)$. j_{k}
 $u_{i} = \frac{1}{y_{i}} \frac{y_{i}}{y_{i}} \frac{1}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}} \frac{y_{i}}{y_{i}}$

 $\overline{}$

/5____