What if we tried the same trick with the SU(2) symmetry? We want the Lagrangian to be invariant under the local Symmetry $I \rightarrow e^{ix^{\alpha}(x)T^{\alpha}} I$ where $T^{\alpha} \equiv \frac{\sigma^{\alpha}}{2} (\alpha = (, 2, 3))$. Guess a covariant derivative; $D_n \overline{\Phi} = \partial_m \overline{E} - ig A_m^a \overline{E}^a$, where g is a coupling constant (analogous to ErM charge e). Need three spin-1 Fields An, one for each T. will postpore prost for later, but the correct transformation $fulls are \left[SA_{\mu} = \frac{1}{g} \partial_{\mu} \alpha + i \left[\alpha, A_{\mu} \right] \left(matrix commutator \right) \right]$ or in components, SAn = - - - Faccab Ac. The corresponding non-abelian Field strength (a 2×2 matrix -valued Lorentz tenor) 15 Frv = (Jn Av - Jv An) - ig [An, Av] & extra tern because Pauli matrices don't commute! A clever may to write this ; On = In - : 9 Am (abstract covariant derivative operato-) $\begin{bmatrix} \mathcal{D}_{n}, \mathcal{D}_{v} \end{bmatrix} = (\partial_{n} - i \mathcal{A}_{n})(\partial_{v} - i \mathcal{A}_{v}) - (\partial_{v} - i \mathcal{A}_{v})(\partial_{n} - i \mathcal{A}_{n})$ = dydv - igdnAv-igAvdn-igAndv-g2ArAv - 2 Jon + ig 2 Am + ig Andu + ig Avon + g2 Av Am $= -ig(\partial_{n}A_{\nu} - \partial_{\nu}A_{n} - ig[\Lambda_{n}, A_{\nu}])$

Con show (*HW) that $\delta F_{nv} = (ix, F_{nv})$, so F_{nv} itself is not parge invariant. (However, $\delta (F_{nv}, F^{nv}) = \delta F_{nv}, F^{-v} + F_{nv}, \delta F^{nv} = (ix, F_{nv})F^{nv} + F_{nv}(ix, F^{nv})$ $= ix F_{nv} F^{nv} - F_{nv}(ix)F^{nv} + F_{nv}(ix)F^{nv}$ matrix point $-F_{nv} F^{nv}_{ix}$

= -ig Fru

One last trik!
$$Tr(ABC...) = Tr(BC...A)$$
 (trace is cyclicity
invariant, So by taking the trace, we can cancel the remaining
thrms and get a gausse-invariant object.
 $K_{suep} = -\frac{1}{2}Tr(FaviF^{**})$ (SUCD) indices
 $= -\frac{1}{4}(F_{av}^{-1}F^{**}) + F_{av}^{-1}F^{**}2 + F_{av}^{-2}F^{***}3)$ because
 $Tr(trit) = Tr(trit) = Tr(trit) = \frac{1}{9}Tr(\frac{1}{0}) = \frac{1}{2}$.
This look just like 3 copies of the Lagrangian for the UCI) gause field,
but hidden inside $F_{av}F^{**}$ or interaction terms, i.e.
 $F_{av}(F^{**}) = f^{123}A^{*}_{a}A^{3}_{a} = A^{14}$
The gausse field interacts with itself!
Let's suitch to standard notation and call the SUCD gause field W and the UCI
gauge Field B we can also related the confirm $A = \frac{1}{4}W_{av}^{**}W^{**}$
 $This comfletes are part of our desired classification:
a Lagranian describing a Spin-O particle of mass m invariant
Under follow of UCI) and SUCD on \mathbb{P} : the former is parametries
the representations of UCI) and SUCD on \mathbb{P} : the former is parametries
by a number Y, and the latter is a choice of representation metrices
Where we have choice the 2-dimensional reputies us to pick
the representations of UCI) and SUCD on \mathbb{P} : the former is parametries.
The Lagranian has \mathbb{E} and W suff-interactions, as used an entries.$

L

$$\frac{Spin-\frac{1}{2}}{\int}$$

OF the Lorentz reps are found in Week 1, we've written down
Lagrangians for (0,6) and
$$(\frac{1}{2},\frac{1}{2})$$
. Now we'll finish the
job with $(\frac{1}{2},0)$ and $(0,\frac{1}{2})$.
Recall $\overline{A} = \overline{J} + i\overline{K}$ and $\overline{B} = \overline{J} - i\overline{K}$ formed $\mathcal{M}(2)$ algebras
 $(\frac{1}{2},0)$: $\overline{B} = \frac{1}{2}\overline{\sigma}$, $\overline{A} = 0 => \overline{J} = \frac{1}{2}\overline{\sigma}$, $K = \frac{i}{2}\overline{\sigma}$
These act on two-comparent objects we will call left-handed spinors:
 $\psi_{L} = 2e^{\frac{1}{2}(i\overline{B}\cdot\overline{\sigma} - \overline{B}\cdot\overline{\sigma})}\psi_{L}$, where \overline{B} parametrizes a rotation and \overline{B} a boost.
(Note this is not unitary) As with spin-1, we will use momentum-deputed basis spinor to Fielding
Infinitesimally, $\overline{\sigma}\psi_{L} = \frac{1}{2}(i\theta_{j} - B_{j})\sigma_{j}\psi_{L}$.
Similarly, $(0, \frac{1}{2})$: $\overline{A} = \frac{1}{2}\overline{\sigma}$, $\overline{B} = 0 => \overline{J} = \frac{1}{2}\overline{\sigma}$, $\overline{K} = -\frac{i}{2}\overline{\sigma}$
(Some behavior under rotations, apposite we were)
This acts on right-handed spinors: $\Psi_{K} = e^{\frac{1}{2}(i\theta_{j} + B_{j})}\sigma_{j}\psi_{R}$

How do we write down a borentz-invariant bogragian? So far, no borentz indices are present to contract with e.g. J. M.

Con try just multiplying spiners, e.g.
$$\Psi_R^+ \Psi_R^-$$
, but this is not
Lorentz invariant!
 $\int (\Psi_R^+ \Psi_R) = \frac{1}{2} (-i\theta_j + \beta_j) \Psi_R^+ \sigma_j \Psi_R^- + \frac{1}{2} \Psi_R^+ (i\theta_j + \beta_j) \sigma_j \Psi_R^-$
 $= \beta_j \Psi_R^+ \sigma_j \Psi_R^- \neq 0$
On the other hands the product of a left-handed and right-handed
Spinor is invariant:
 $\int (\Psi_L^+ \Psi_R) = \frac{1}{2} (-i\theta_j - \beta_j) \Psi_L^+ \sigma_j \Psi_R^- + \frac{1}{2} \Psi_L^+ (i\theta_j + \beta_j) \sigma_j \Psi_R^-$
 $= D$
This is, it Herritian, so add its Herritian conjugate.
 $\Lambda^- \supset m(\Psi_L^+ \Psi_R + \Psi_R^+ \Psi_L) = cuill see this is a must tern for
 Ψ_R^- spin- $\frac{1}{2}$ fields
Conclusion: without derivatives, only a product of Ψ_L^- ad Ψ_R^- is Laretz-invalut.
But just this tern alow gives equators of motion $\Psi_L^- = \Psi_R^- = 0$, which is
very baring.
Consider $\Psi_R^+ \sigma_j \Psi_R^+$.
 $\int (\Psi_R^+ \sigma_j \Psi_R^+ - \frac{1}{2} (-i\theta_j + \beta_j) \Psi_R^+ \sigma_j \sigma_j \Psi_R^+ - \frac{1}{2} (i\sigma_j + \beta_j) \Psi_R^+ \sigma_j \sigma_j \Psi_R^-$
 $= 2\delta_{13} = -\frac{1}{2} (\xi_{13}^+ \sigma_j - \xi_{13}^+ - \xi_{13}^- \sigma_j - \xi_{13}^- - \xi_$$

CAUTION: of is Not a 4-refer. It is just a collection of 4 metrics. [II]
However, be notation and the previous calculation make it clear that

$$|\psi_{k}^{+}\sigma^{-n}\partial_{n}\psi_{k}|$$
 is too to-involut (Inder of i makes this term Hemitian)
Similarly, $\overline{\sigma}^{+} \equiv (A, -\overline{\sigma})$ is too to-involut when sandarched between ψ_{k} and ψ_{k}^{+}
 $=> [L = i\psi_{k}^{+}\sigma^{-}\partial_{n}\psi_{k} + i\psi_{k}^{+}\overline{\sigma}^{+}\partial_{n}\psi_{k} - m(\psi_{k}^{+}\psi_{k} + \psi_{k}^{+}\psi_{k})]$ is he Lagrangian
for a latthack and a right-haded spin- \pm particle coupled with a mass
term. Note here is only are derivative, so $[\overline{UV}] = \frac{3}{2}$]
Equations of mation: that ψ_{k} and ψ_{k}^{+} as independent, so even. For $\psi_{n}^{+}, \psi_{n}^{+}$ are
 $i\sigma^{+}\partial_{n}\psi_{k} - m\psi_{k} = 0$] Dirac equation (we will see this is men-
 $i\sigma^{-}\partial_{n}\psi_{k} - m\psi_{k} = 0$] Dirac equation (we will see this is men-
 $i\sigma^{-}\partial_{n}\psi_{k} - m\psi_{k} = 0$] Dirac equation (we will see this is men-
 $i\sigma^{-}\partial_{n}\psi_{k}$ a mass.

 Ψ_{k} and ψ_{k} live in differit representations of borated group, so indeed)
m is acting like a mass.

 $\Psi_{k} = e^{i(B_{k}-B_{k})x}\psi_{k}+\psi_{k}$
This fact determing an evenus amount of the structure of the SM.

Igroing mass terms for now, we can see that
 $i\psi_{k} = \frac{2\pi}{3} = \frac{1}{3} \psi_{k}$ and ψ_{k} to involve the structure of the SM.

Igroing mass terms for now, we can see that
 $i\psi_{k} = \frac{2\pi}{3} = \frac{1}{3} \psi_{k}$ and $\psi_{k} = 1$ involve the structure of the SM.

To promote these to local symmetries, just replace
 $\partial_{m} = \partial_{m} = \partial_{m} - igRA_{m}$ or $D_{m} \equiv -igT^{m}A_{m}^{m}$ as for scalars.

 $= j$ interesting kines spin- \pm and spin- \pm ender ψ_{k} as for scalars.

 $= j$ interesting kerner spin- \pm and ψ_{k} are environent.

If
$$m=0$$
, ψ_{L} and ψ_{R} are no larger coupled:
 $i\sigma^{-1}\partial_{n}\psi_{R}=0$ } Weyl equations.
 $i\overline{\sigma}^{-1}\partial_{n}\psi_{L}=0$
Let's suppose ψ_{L} has a U(1) symmetry $\psi_{L} \rightarrow e^{i\Phi_{R}}\psi_{L}$
 $D_{n}\psi_{L} = \partial_{n}\psi_{L} - i\Phi_{R}h\psi_{L}$
 $= \sum A = i\psi_{L}^{+}\overline{\sigma}^{-}(\partial_{n} - i\Phi_{R}h)\psi_{L}$
 $\sum A A_{n}\psi_{L}^{+}\overline{\sigma}^{-}\psi_{L}$
Life the scalar, this is a coupling $-A_{n}d^{-1}$ where the
fermion current is $J^{-}=Q\psi_{L}^{+}\overline{\sigma}^{-}\psi_{L}$.
IF ψ_{L} and ψ_{R} have the same symmetries, for $m \neq 0$ it is
convenient to combine them into a 4-component object
 $\psi = (\psi_{R})$, could $-Dirac$ spinor. If we define
 $\overline{U} = \psi^{+}Y^{0} = (\psi_{R}^{+}-\psi_{L}^{+})$ where $Y^{0} = \begin{pmatrix} \partial_{2m} - d_{m}u_{L} \\ d_{m}u_{L}} \\ d_{m}u_{L} \end{pmatrix}$ (for Hw_{2}),
we can write the Lagrangian more simply $(u_{ing}Y^{-})$ mbins for Hw_{2})
 $\mathcal{L} = \overline{\psi}(iY^{-}D_{1} - m)\psi = 0$ where $m \equiv m - 1_{perp}$
(HW 3: derive Dirac equation for ψ from ψ_{L} and ψ_{R} legas.)
Current is $J^{-}=Q\overline{\psi}Y^{-}\psi_{L}$
Note that stacking ψ_{L} and ψ_{R} amounts to constructing the $(\frac{1}{2},0) \oplus (0,\frac{1}{2})$
representation. Looking about A_{R} , which have different symmetries (it
is a Chiral theory), but at low energies, ψ_{L} and ψ_{R} for the electron
have the same symmetries, so the $\overline{\psi}/\psi$ formation is more convertant.