Nonabelian gauge fields (very briefly!)
What if we tried the same trick with the SU(2) symmetry? We wont the Lagramion to be invariant under be local symmetry $\Phi \rightarrow e^{i \alpha^{a}(x) \tau^{a}} \Phi$ where $\tau^{a} \equiv \frac{\sigma^{a}}{2}(a=1,2,3)$. Guess a covariant derivative: $D_{\mu} \Phi=\partial_{\mu} \Phi-i g A_{\mu}^{a} \tau^{a} \Phi$, where g is a coupling constant Canalogous to ErA chare e). Need three spinal fields A_{μ}^{a}, one for each τ. will postpone proof for later, but the correct transtomation culls are $\delta A_{\mu}=\frac{1}{9} \partial_{\mu} \alpha+i\left[\alpha, A_{\mu}\right]$ (matrix commutator) or in components, $\delta A_{\mu}^{a}=\frac{1}{g} \partial_{\mu} \alpha^{a}$ - fac $\alpha^{b} A_{\mu}^{c}$.
The corresponding non-abelian field sterantu (a 2×2 matrix-valued create tensor) is $F_{N v}=\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)$-iq $\left[A_{\mu}, A_{v}\right] \nless \begin{aligned} & \text { extern tern because Pali matrices } \\ & \text { don't commatel }\end{aligned}$ A clever way to unite this:
$D_{\mu}=\partial_{\mu}-i g A_{\mu} \quad$ (abstract covariant derivative opeato-)

$$
\begin{aligned}
{\left[D_{\mu}, D_{v}\right]=} & \left(\partial_{\mu}-i g A_{\mu}\right)\left(\partial_{v}-i g A_{v}\right)-\left(\partial_{v}-i g A_{v}\right)\left(\partial_{\mu}-i g A_{\mu}\right) \\
= & \partial_{\mu} \partial_{v}-i g \partial_{\mu} A_{v}-i g A_{\mu} \partial_{\mu}-i g \not \rho_{\mu} \partial_{v}-g^{2} A_{\mu} A_{v} \\
& -\partial_{\varphi} \partial_{\mu}+i g \partial_{v} A_{\mu}+i g A_{\rho} \partial_{v}+i g A_{\mu} \partial_{\mu}+g^{2} A_{v} A_{\mu} \\
= & -i g\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}-i g\left[A_{\mu}, A_{v}\right]\right) \\
= & -i g F_{\mu v}
\end{aligned}
$$

Can show (HW) that $\delta F_{w v}=\left[i \alpha, F_{r v}\right]$, so $F_{r v}$ itself $F_{\text {is }}$ not gauge invariant. However,

$$
\begin{aligned}
& \left.\delta\left(F_{m v} \cdot F^{\sim v}\right)=\delta F_{m} \cdot F^{\sim v}+F_{v v} \cdot \delta F^{\sim v}=\left[i \alpha, F_{v v}\right] F^{\sim v}+F_{m v} C_{i} \alpha, F^{v v}\right] \\
& =i \alpha F_{m} F^{n v}-F_{\sim v}(\mid \alpha) F^{\sim v}+F_{\sim v}(i \rho) F^{m v} \\
& \text { matrix product } \\
& \text { and Einstein Summation } \\
& \text { - FruFnia }
\end{aligned}
$$

One last trick: $\operatorname{Tr}(A B C \cdots)=\operatorname{Tr}(B C \cdots A)$ (trance is cyclical, invrriant, so by taking the trace, we can cancel te remaining terns and get a gauge- invariant object.

$$
\begin{aligned}
& \alpha_{s u(2)}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu v} \cdot F^{r v}\right) \\
& =-\frac{1}{4}\left(F_{m v}^{1} F^{r v 1}-F_{n v}^{2} F^{\sim v 2}-+F_{\sim v}^{3} F^{\sim v} \underline{3}\right) \text { because } \\
& \operatorname{Tr}\left(\left(\tau^{1}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau^{2}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau_{3}\right)^{2}\right)=\frac{1}{4} \operatorname{Tr}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2} .
\end{aligned}
$$

This looks just like 3 copies of the Lagrassion for the ucla) gauge field, Gut hidden inside $F_{w} F^{n v}$ an interaction terms, ie.

$$
F_{r v}^{\prime} F^{r v 1} \supset f^{123} A_{m}^{2} A_{v}^{3} \partial^{m} A^{1 v}
$$

The gauge field interacts with itself!
Let's switch to starlad notation and call the su(2) game fled W and tine U(1) gauge Field B. We can also relabel be coupling $a \rightarrow g^{\prime} y$ (will see uh next week);

$$
\begin{aligned}
& D_{\mu} \Phi=\left(\partial_{\mu}-i g^{\prime} y B_{\mu}-i g W_{\mu}^{a} \tau^{a}\right) \Phi \\
& \alpha_{\Phi, \text { gamed }}=\left|D_{\mu} \Phi\right|^{2}-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{4}-\frac{1}{4} B_{\mu \nu} B^{\mu v}-\frac{1}{4} W_{\mu \nu}^{2} W^{\mu v a}
\end{aligned}
$$

This completes ore port of our desired classification:
a Lagrarsion describing a spins particle of mass m invainat under Poincare transformations and the (gauged) internal symmetries $U(1)$ and $S U(2)$. This description requires us to pick the representations of $u(1)$ and su(2) on Φ : The former is parametrized by a number Y, and k latter is a choice of cepreseration matrices, where we have chosen be 2-dimensional rep using the Pauli matrices, The Lagarion has 区 and W sut-interactions, as well as I-W and I- B interactions.

Spin - $\frac{1}{2}$
Of the Lorentz ceps we found in week 1, wive written down Lagrangian for $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Now well finish the $j 06$ with $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$.
Recall $\vec{A}=\frac{\vec{j}+i \vec{k}}{2}$ ar $\vec{B}=\frac{\vec{j}-i \vec{k}}{2}$ for ned su(2) a (geb-us

$$
\left(\frac{1}{2}, 0\right): \vec{B}=\frac{1}{2} \vec{\sigma}, \vec{A}=0 \Rightarrow \vec{J}=\frac{1}{2} \vec{\sigma}, K=\frac{i}{2} \vec{\sigma}
$$

These act on two-comporent objects we will call left-handed spinous: $\psi_{L} \rightarrow e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}-\vec{\beta} \cdot \vec{\theta})} \psi_{L}$, where $\vec{\theta}$ parancterizes a rotation and $\vec{\beta}$ a boost.
(Note his is not motor!! As with spin-1, we will use momentim-depentent basis spinet to taxis). Infinitesimal $l_{1}, \delta \psi_{L}=\frac{1}{2}\left(i \theta_{j}-B j\right) \sigma_{j} \psi_{L}$.
Similarly, $\left(0, \frac{1}{2}\right): \widehat{A}=\frac{1}{2} \hat{\sigma}, \vec{B}=0 \Rightarrow \vec{j}=\frac{1}{2} \vec{\sigma}, \vec{k}=-\frac{i}{2} \vec{\sigma}$
(same behavior under rotations, opposite mere boosts)
This acts on right-hanled spinari. $\psi_{R} \rightarrow e^{\frac{1}{2}(i \vec{\theta} \cdot \vec{\sigma}+\vec{B} \cdot \vec{\sigma})} \psi_{R}$

$$
\delta \psi_{R}=\frac{1}{2}\left(i \theta_{i}+\beta j\right) \sigma_{j} \psi_{R}
$$

Take Hermitic conjugates:

$$
\begin{aligned}
& \delta \psi_{L}^{+}=\frac{1}{2}\left(-i \theta_{j}-\beta_{j}\right) \psi_{L}^{+} \sigma_{j} \\
& \delta \psi_{R}^{+}=\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j}
\end{aligned}
$$

How do we write down a Lorentz-inumiat Lagrangian? So far, so Lorentz indices are present to contract with e.a. $\partial_{\mu} \psi_{L}$.

Con try just multiplying spinors, eq. $\psi_{R}^{+} \psi_{R}$, but th's is not Lorentz invariant!

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \psi_{R}\right) & =\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j} \psi_{R}+\frac{1}{2} \psi_{R}^{+}\left(i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =\beta_{j} \psi_{R}^{+} \sigma_{j} \psi_{R} \neq 0
\end{aligned}
$$

On the other hark the product of a left-haded ad rinhthanded spinor is invariant:

$$
\begin{aligned}
\delta\left(\psi_{L}^{+} \psi_{R}\right) & =\frac{1}{2}\left(-i \theta_{j}-\beta_{j}\right) \psi_{L}+\sigma_{j} \psi_{R}+\frac{1}{2} \psi_{L}^{+}\left(i \sigma_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =0
\end{aligned}
$$

This int Hermitian, so add its Hermitian conjugate.
$L \underset{\Gamma}{\supset} m\left(\psi_{L}+\psi_{R}+\psi_{R}{ }^{+} \psi_{L}\right) \xlongequal{\text { "contains" }}$ will see this is a mass tern for fields
Conclusion: without derivatives, only a product of ψ_{L} ad ψ_{R} is loretz-inveriat. But just this term alone gives equations of nation $\psi_{L}=\psi_{R}=0$, which is very boring.
Consider $\psi_{k}^{+} \sigma, \psi_{R}$.

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \sigma_{i} \psi_{R}\right) & =\frac{1}{2}\left(-i \theta_{j}+\beta_{j}\right) \psi_{k}^{+} \sigma_{;} \sigma_{i} \psi_{k}+\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{i} \sigma_{j} \psi_{R} \\
& =\frac{\beta_{j}}{2} \psi_{R}^{+} \underbrace{\left\{\sigma_{i}, \sigma_{j}\right\} \psi_{k}}_{\text {articomuntaf- }}+\frac{i \theta_{j}}{2} \psi_{R}^{+}[\underbrace{\left.\sigma_{i}, \sigma_{j}\right]}_{\text {commutator }} \psi_{R} \\
& =2 i_{i j k} \sigma_{k} \\
& =\beta_{i j} \psi_{R}^{+} \psi_{R}-\epsilon_{i j k} \epsilon_{j} \psi_{R}^{+} \sigma_{k} \psi_{R}
\end{aligned}
$$

Let's dethe $\sigma^{\mu}=(\mathbb{1}, \tilde{v})$. Claim: $\psi_{R}{ }^{+} \sigma^{\mu} \psi_{R} \equiv\left(\psi_{R}{ }^{+} \psi_{R}, \psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)$ has precisely, the Lorenz tronstormation properties of a 4 -vector $V^{m} \equiv\left(v^{0}, \vec{v}\right)$:

$$
\left.\begin{array}{l}
\delta V^{0}=\vec{\beta} \cdot \vec{V} \\
\delta \vec{V}=\vec{B} V^{0}-\vec{\theta} \times \vec{V}
\end{array} \quad \text { you did this in } H w 1\right)
$$

CAUTION: σ^{m} is NOT a 4-vector. It is just a collection of 4 matrices. However, be notation and the previous calculation make it clear that $i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}$ is Loretz-invmiant (factor of i makes his term Hermitian)
Similarly $y, \vec{\sigma}^{\mu} \equiv(\mathbb{1},-\vec{\sigma})$ is Loreatz-invariant when sandwiched befucen ψ_{L} and $\psi_{L}{ }^{+}$
$\Rightarrow \alpha=i \psi_{R}{ }^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}+i \psi_{L}{ }^{+} \bar{\sigma}^{\wedge} \partial_{\mu} \psi_{L}-m\left(\psi_{R}{ }^{+} \psi_{L}+\psi_{L}{ }^{+} \psi_{R}\right)$ is he Lagoasian
for a left-havel and a right-hanled spin- $\frac{1}{2}$ particle coupled with a mass term. Note there is only are derivative, so $[\psi]=\frac{3}{2}$
Equations of notion: treat ψ_{n} ad ψ_{R}^{+}as independent, so e.orm. for $\psi_{n}^{+}, \psi_{r}^{+}$ae

$$
\left.\begin{array}{l}
i \sigma^{\mu} \partial_{\mu} \psi_{R}-m \psi_{L}=0 \\
i \bar{\sigma}^{\mu} \partial_{m} \psi_{L}-m \psi_{R}=0
\end{array}\right\} \begin{aligned}
& \text { Dirac equation (we will see this in more } \\
& \text { detail ross soon!) }
\end{aligned}
$$

Can show (AH) that both ψ_{L} and ψ_{R} satisfy Klein-Gorden eqn, so indeed, m is acting like a mass.
ψ_{R} and ψ_{L} live in differat representations of Loratz group, so con trastorn differently under internal symmetries. Suppose $\psi_{L} \rightarrow e^{i Q_{1} \alpha} \psi_{L}$ ad $\psi_{R} \rightarrow e^{i \alpha_{2} \alpha} \psi_{R}$. Then kinetic terns are invariant, but not mass terns!

$$
\psi_{R}^{+} \psi_{L} \rightarrow e^{i\left(\alpha_{1}-\alpha_{2}\right) \alpha} \psi_{R}^{+} \psi_{L}
$$

This fact determines an enormous amount of the structure of the SM.
Ignoring ness terns for now, we con see that i $\psi_{L, R}^{+} \stackrel{(}{\sigma}^{m} \partial_{\mu} \psi_{L, R}$ are invariant under any global $U(1)$ or $S U(N)$ transtomentions, under which ψ^{+}and ψ temetorm opposites.
To promote these to local symmetries, just replace

$$
\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}-i g Q A_{\mu} \text { or } D_{\mu} \equiv \partial_{\mu}-i g T^{a} A_{\mu}^{a} \text { as for scalars. }
$$

\Rightarrow interaction between spin- $\frac{1}{2}$ adespin-1, egg. electon-photon.

If $n=0, \psi_{L}$ and ψ_{R} are no longer coupled:
$i \sigma^{\mu} \partial_{\mu} \psi_{R}=0 \quad 3$ west equations.

$$
i \bar{\sigma}^{m} \partial_{\mu} \psi_{L}=0
$$

Let's suppose ψ_{L} has a $U(1)$ symmetry $\psi_{L} \rightarrow e^{i a \alpha} \psi_{L}$

$$
\begin{aligned}
D_{\mu} \psi_{L} & =\partial_{\mu} \psi_{L}-i Q A_{\mu} \psi_{L} \\
\Rightarrow \alpha & =i \psi_{L}^{+} \bar{\sigma}^{-}\left(\partial_{\mu}-i Q A_{\mu}\right) \psi_{L} \\
& \partial Q A_{\mu} \psi_{L}^{+} \bar{\sigma}^{\mu} \psi_{L}
\end{aligned}
$$

Like the scalar, this is a coupling - Ap J^{μ}, where the fermion current is $J^{\mu}=-Q \psi_{L}^{*} \bar{\sigma}^{m} \psi_{L}$.

If ψ_{L} and ψ_{R} have the same symmetries, for $n \neq 0$ it is convenient to combine then into a 4-component object $\psi=\binom{\psi_{2}}{\psi_{R}}$, called a Dirac spinor. If we define $\bar{\psi} \equiv \psi^{+} \gamma^{0}=\left(\begin{array}{lll}\psi_{R}^{+} & \psi_{L}^{+}\end{array}\right)$where $\gamma^{0}=\left(\begin{array}{cc}0_{2 \times 2} & n_{2 \times L} \\ n_{2 \times 2} & 0_{2 \times 2}\end{array}\right)$ (From HW 2), we can write the Lagrangian more simply (using γ^{\wedge} matrices from Hwan) $\mathcal{L}=\bar{\psi}\left(i \gamma^{m} D_{\mu}-n\right) \psi=0$ where $n \equiv n \times \mathbb{1}_{4 \times 4}$
($\mathrm{H} w$ 3: derive Dirac equation for ψ form ψ_{2} and $\psi_{R} e_{q} \sim s$) Current is $J^{\mu}=-Q \bar{\psi} \gamma^{\mu} \psi$.
Note that stacking ψ_{L} ad ψ_{R} amounts to construction the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ representation. Looking ahead, the standard Model will be witt in terms of ψ_{L} and ψ_{R}, which have different symmetries (it is a chiral theory), but at low energies, ψ_{L} and ψ_{R} tor the electron have be save symmetries, so the $\bar{\psi} / \psi$ formalism is more convenient.

