Colliders and defectors

How do we make elementary particles? $E=m c^{2}$ plus QM: if you have enough every, anything that can holpen, will happen
For example, collide electrons and positrons:

If each bean has energy $\frac{E}{2}$, then the center-of-mass energy is E : we con create particles with total mass up to E.
QM (really QFT) tells us the probability of making a given set of fimel-state particles. In particle physics me call this the matrix element $M_{i \rightarrow f}$, and next week we will see how to calculate it for some specific processes.
Cross sections
Parameterize interaction strength using something with units of area
 number of scattered particles proportional to area of scattering target

If we have two colliding, beams with cross-sectional area A all length l, Scattering, cate $=\frac{\text { evans }}{\text { time }}=n_{A} \wedge B A l\left|v_{A}-V_{B}\right| \sigma \equiv \angle \sigma$
\mathcal{L} is the luminosity and parametrizes the flux of incoming particles.
σ is the scattering cross section which parametrizes the interaction strap, th. n_{A}, \cap_{B} are the number densities of particles A ad B in the beans. $\left|v_{A}-v_{B}\right|$ is the relative velocity of the two beans. If the beams are relativistic $\left(v_{A} \approx 1, v_{B} \approx 1\right)$, this factor is $\left|v_{A}-v_{B}\right|=2$. Despite appearances, this does not violate the velocity addition rule: it's formally defined as the "Moller velocity" and ensures the scattering rate is Lorentz-invariont with respect to boosts along the beam axis. (see Peskin \& schroeder Sec. 4.5 if yon're curious.)

Fermi's Golden Rule relates σ to M :

Note that σ is not Lorentz-invarint, but transforms like an area: Lorentz-inut, for boosts along beam axis. This is the key observable predicted by GFT: "effective area" of beams of purticcer A and B, taking into account the fact that some collisions are rarer than others.

Units: σ is usually given in [SI pafix] barns, where 1 barn $=10^{-24} \mathrm{~cm}^{2}$
Luminosity is usually quoted in $[p-e f i x \times b a r a s]^{-1} / s$, so for example, a process with $\sigma=1 \mathrm{fb}=10^{-15}$ barns at the $\mathrm{LHC}\left(\mathrm{C} \mathrm{\sim 1} \mathrm{pb}^{-1} / \mathrm{s}\right)$ has a cate $R=\angle O=10^{-3} / \mathrm{s}$.

How do we detect elementary particles?
Two steps. measure on energy andlor momentum and then identify the particle $6 y$ its mars and electric chare.

Cross-sectional view of the ATLAs detector:

Entire detector is immersed in a ragnetor field (out of the page in inner region). reassure pomatum and charge by curvature radius $R \simeq 3 n \times \frac{P_{1}[\text { Gev }]}{Q|B|[T]}$
If we know E and $p \Rightarrow$ know n, particle ID

Detector coordinates and kinematics:

Basically cylindrical coordinates, but instead of θ, use pseudorapidity $\quad y \equiv-\ln \tan \frac{\theta}{2}$

Why this fury variable? 2 related reasons:

- particle production is roughly uniform in η
- behoves nicely under boosts for massless particles (Larkosk: 5.3)

Hard to detect particles which go very close to beam direction (how do sou aroid the beam?). As a result, of ten use tracers nomertm $p_{T} \equiv \sqrt{p_{x}^{2}+p_{4}^{2}}=\sqrt{p^{2}-p_{2}^{2}}$.
Since all 3 components of spatial momentum mort be conserved, can infer existence of invisible particles from ingularee in $\mathrm{f} T$.

Phase space
To compute cross sections, we need to sum over all final states \Rightarrow integrate over all 4 -momenta consistent wo l Poincaré invariance
Translation invariance $\Rightarrow 4$-momention conservation (Noethers Theorem)
For a process $p_{A}+p_{B} \rightarrow p_{1}+p_{2}+\cdots p_{n}$,

$$
\int d \pi_{n}=\int\left\{\prod_{i=1}^{1} \frac{d^{4} p_{i}}{(2 \pi)^{4}} 2 \pi \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right)\right\}(2 \pi)^{4} \delta^{(4)}\left(p_{A}+p_{B}-\sum_{i=1}^{n} p_{i}\right)
$$

The 2Tis are convectionalis attacked to $d \pi_{1}$ but they do matter-dorit fo get then!
This is manifestly lorentz-invariant because the δ-functions enforce $p^{2}=m^{2}$ for each final-state particle, and $p_{A}+p_{B}-\sum_{i=1}^{n} p_{i}=0$ (be zero 4 -rector is also Locutz-inuriont).
we can perform the p^{0} interpol (for each; using

$$
\begin{aligned}
& \delta\left(p_{i}^{2}-\mu_{i}^{2}\right)=\delta\left(\left(p_{i}^{0}\right)^{2}-\vec{p}^{2}-m_{i}^{2}\right) \text { and } \\
& \delta(f(x))=\frac{1}{\left|f^{\prime}\left(x_{0}\right)\right|} \delta\left(x-x_{0}\right) \\
& \Rightarrow \delta\left(p_{i}^{2}-m_{i}^{2}\right)=\frac{1}{2 \sqrt{\vec{p}_{i}^{2}+m_{i}^{2}}}\left\{\delta\left(p_{i}^{0}-\sqrt{p_{i}^{2}+m_{i}^{2}}\right)+\delta\left(p_{i}^{0}+\sqrt{\vec{p}_{i}^{2}+m_{i}^{2}}\right)\right\} \\
& \Rightarrow \int d p_{i}^{0} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}^{0}\right) f\left(p_{i}^{0}\right)=\frac{1}{2 E_{i}} f\left(E_{i}\right) w / E_{i}=\sqrt{\vec{p}_{i}^{2}+m_{i}^{2}} \\
& \Rightarrow \int d \pi_{n}=\int\left\{\prod _ { i = 1 } ^ { n } \frac { d ^ { 3 } p _ { i } } { (2 \pi) ^ { 3 } } \frac { 1 } { 2 E _ { i } } \left\{(2 \pi)^{4} \delta^{(4)}\left(p_{A}^{0}+p_{B}-\sum_{i=1}^{n} p_{i}\right)\right.\right. \\
& p_{i}^{0}=E_{i}
\end{aligned}
$$

For 2 -particle phase space, con do most of the integrals. (HW 4: 3-particle phase space.) Consider the process $p_{1}+p_{2} \rightarrow p_{3}+p_{4}$ (relabeling) to Match Schwartz 5.1) in the center-of-mess frame where $p_{1}+p_{2}=\left(E_{C M}, \overrightarrow{0}\right)$.

$$
d \Pi_{2}=\frac{d^{3} p_{3}}{(2 \pi)^{3}} \frac{1}{2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3}} \frac{1}{2 E_{4}}(2 \pi)^{4} \int^{(\pi)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
$$

use $\delta^{3}\left(\vec{p}_{1}+\vec{p}_{2}-\vec{p}_{3}-\vec{p}_{4}\right)=\delta^{3}\left(\overrightarrow{0}-\vec{p}_{3}-\vec{p}_{4}\right)$ to do d${ }^{3} p_{4}$ integral:.
Sets $\vec{p}_{4}=-\vec{p}_{3}$. Then, write $d^{3} p_{3}=p_{3}^{2} d p_{3} d \Omega$, when $d \Omega$ is the differential solid angle for \vec{p}_{3} in spherical coordinates.
Collecting the $2 \pi i s$ and relabeling $p_{3}=p f$

$$
\begin{aligned}
& d \pi_{2}=\frac{1}{16 \pi^{2}} d \Omega \int d \rho_{f} \frac{p_{f}^{2}}{E_{3} E_{4}} \delta\left(E_{3}+E_{4}-E_{c m}\right) \delta(x)=\delta(-x) \\
& \text { were } E^{2}=\sqrt{0^{2}+2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { med signs fo canveiace: } \\
& \delta(x)=\delta(-x)
\end{aligned}
$$

where $E_{3}=\sqrt{\rho_{f}^{2}+n_{3}^{2}}, E_{4}=\sqrt{\rho_{f}^{2}+n_{4}^{2}}$.
Chare variables $\rho_{f} \rightarrow x\left(p_{f}\right)=E_{3}\left(p_{f}\right)+E_{4}\left(p_{f}\right)-E_{c m}$

$$
\text { Jacobian: } \frac{d x}{d p_{f}}=\frac{2 p_{f}}{2 \sqrt{\rho_{f}^{2}+m_{3}^{2}}}+\frac{2 p_{f}}{2 \sqrt{\rho_{f}^{2}+m_{4}^{2}}}=\frac{p_{f}}{E_{7}}-\frac{p_{f}}{E_{4}}=\frac{E_{3}+E_{4}}{E_{3} E_{q}} p_{f}
$$

δ-function enforces $E_{3}+E_{4}=E_{c_{n}}$, so

