Photon emission. et e - m+m V

We now consider an $O(\alpha)$ correction to the process we studied last week. $M = \left(\begin{array}{c} P_{1} & P_{3} & n^{-} \\ P_{1} & P_{3} & n^{-} \\ P_{1} & P_{2} & P_{1} & P_{1} & P_{1} \\ P_{1} & P_{2} & P_{2} & P_{1} & P_{2} \\ P_{1} & P_{2} & P_{2} & P_{2} & P_{2} \\ P_{1} & P_{2} & P_{2} & P_{2} & P_{2} \\ P_{2} & P_{2} & P_{2} & P_{2} & P_{2} \\ P_{3} & P_{2} & P_{3} & P_{3} & P_{3} \\ P_{4} & P_{2} & P_{4} & P_{4} & P_{4} \\ P_{5} & P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5} & P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5} & P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5} & P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5} & P_{5} & P_{5} & P_{5} & P_{5} \\ P_{5}$

$$iM = i \frac{e^2}{R^2} \overline{v}(\rho_{\nu}) Y_m u(\rho_1) \overline{u}(\rho_3) \left[Y_m^{-i}(f_4 + p_1) - (-ieY^*) + (-ieY^*) \frac{i(p_3 + p_1)}{(\rho_3 + \rho_1)^2} Y_m^{-1} v(\rho_4) \mathcal{E}_a^A(\rho_1) \right]$$

Let
$$S^{m\alpha} = -ie\left[Y^{\alpha} \frac{i(p_{3}+p_{\gamma})}{(p_{3}+p_{\gamma})^{2}}Y^{\alpha} - Y^{\alpha} \frac{i(p_{4}+p_{\gamma})}{(p_{4}+p_{\gamma})^{2}}\right]$$
 (not symmetric in madal match index order!)

(ross section after averaging over initial and summing over final spins is

$$\sigma_{\rm Y} = \frac{1}{2R^{\rm Y}} \int d \pi_{\rm S} (IMI^{\rm Y}) = \frac{e^{\pm}}{2R^{\rm G}} L^{\rm AV} X_{\rm AV}$$
Normalize A = E tE

$$L^{\mu\nu} i; [left half of the diagram:$$

$$L^{\mu\nu} = \frac{1}{4} \sum_{s_1 s_2} \overline{v}(p_s) Y^{\mu} u_{s_1}(q_1) \overline{u}_{s_1}(q_1) Y^{\nu} v_{s_2}(p_s) = \frac{1}{4} Tr([f_2 Y^{\mu} f_1 Y^{\nu}] = p_1^{\mu} p_2^{\nu} + p_1^{\nu} p_2^{\nu} - \frac{1}{2} \alpha^{\mu} q^{\mu\nu}$$

$$X^{\mu\nu} is right half, involving the photon:
from (\overline{u} Y^{\mu} - Y^{\mu} v)^{\dagger} = \overline{v} Y^{\mu} - Y^{\mu} u$$

$$X^{\mu\nu} = \int d \prod_{3} \sum_{s_3, s_4, \dots} (\overline{u}_{s_3}(p_3) S^{\mu\alpha} v_{s_4}(p_4) \overline{v}_{s_4}(p_4) S^{\mu\nu} u_{s_3}(p_3) E^{\alpha}_{\alpha} (p_7) E_{\beta}(p_7)]$$

$$V_{s_4} = \int d \prod_{3} \sum_{s_3, s_4, \dots} (\overline{u}_{s_3}(p_3) S^{\mu\alpha} v_{s_4}(p_4) \overline{v}_{s_4}(p_4) S^{\mu\nu} u_{s_3}(p_3) E^{\alpha}_{\alpha} (p_7) E_{\beta}(p_7)]$$

$$V_{s_4} = \int d \prod_{s_5, s_4, \dots} (\overline{u}_{s_5} Y^{\mu} + \overline{v}_{s_5} Y^{\mu}) F_{s_5}(p_4) F_{s_5}(p_5) F_{$$

Here, we are integrating over 3-body phase space,

$$d[T]_3 = \frac{d^3p_3}{(x\pi)^3} \frac{d^3p_4}{(x\pi)^3} \frac{1}{x^{(1)}} \frac{$$

From HW 9, st tru = $\sum m_i^* \sim Q^*$ (you derived it for $p_i + p_2 \rightarrow p_3 + p_4$, but a similar result holds with appropriate minus sizes for $Q \rightarrow p_3 + p_4 + r$) => $x_r + x_1 + x_2 = 2$, take $x_r = 2 - x_1 - x_2$ so x_1 and x_2 are independent. Limits of integration: $t = 2p_3 \cdot p_7 = 2E_3 E_r (1 - \cos \theta_{3r})$. this = 0 when $E_r = 0$; true = $4E_3 E_r$ when $\cos \theta_{3r} = 1$. If $E_4 = 0$, $E_3 = E_r = \frac{Q}{2}$, so the R^* = $2x_1 + \sin^2 \theta_1$.

$$\int d \Pi_{3} = \frac{Q^{2}}{128\pi^{3}} \int dx_{1} \int_{|-x_{1}|}^{1} dx_{2} (recall very similar form from Hw 3)$$

$$Tr \left[R_{3} \int_{-x_{1}}^{x_{1}} \int_{-x_{1}}^{x_{1}} \int_{-x_{1}}^{x_{1}} \int_{-x_{1}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{2}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{2}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{2}} \int_{-x_{2}}^{x_{1}} \int_{-x_{2}}^{x_{2}} \int_{-x_{2}$$

By (k analysis above,
$$X_{1} = 1$$
 corresponds to $2E_{1}E_{1}(1-\cos \theta_{1}v)=0$.
This conhoppen eiter if $E_{1}=0$ (a suff singularity), or $\theta_{1}=0$
(a collinear singularity). This behavior is generic in AFT : massless
particles prefer to be emitted with low creates and along the
directions of charged particles.
If we preter that the pholon has a mass m_{1} , and let $\beta = \frac{m^{2}}{4t}$.
The limits of integration charge to $\int dT_{1} = \int dr_{1} \int_{1-\frac{1}{2}}^{1-\frac{1}{2}} dr_{1} \int_{1-\frac{2$

9

Charged purficles are accompanied by clouds of photons.

More concrete interpretation: any real experiment will have
a finite every resolution
$$E_{res}$$
 and angular resolution G_{res} . Instead of
Cutting off the integral with m_{V_1} use E_{res} and G_{res} instead.
This is technically complicated, so we will just quote the answer:
 $O\left(e^{\dagger}e^{-3}m^{\dagger}n^{-}V\right)\Big|_{E_{V}} = \sigma_{0}\frac{e^{-}}{8\pi^{\dagger}}\left(\ln\frac{1}{9r_{es}}\left[\ln\left(\frac{\alpha}{2E_{res}}-1\right)+...\right]+...\right)$
exclusive cross $E_{V} > E_{res}$
Section (country 1 $\theta_{V_1} > \theta_{res}$
Focus on $\ln\frac{\alpha}{2E_{res}}$. If $Q \gg E_{res}$, Could be in a situation where
 $\ln\left(\frac{\alpha}{2E_{res}}\right) > \frac{8\pi^{\dagger}}{e^{-}}$, and perturbation theory breaks down.
Solution: Consider $e^{\pm}e^{-} \Rightarrow m^{\pm}n^{-} + NV$, and don't restrict to a
fixed number of photons. This is no larger at a fixed order in
the coupling e_{s} but corresponds before to the physical situation where
distinguishing $2vs$. $3vs$. $4vry$ (our-every photons isn't possible
in practice. Inclusive cross sections often have better convegence properties.

- · QFT gives intinities when you ask it dunb (unphysical) questions. By relating amplitudes to a physically measurable quantity, we always get finite results.
- · Singularities tend to appear beyond the lowest-order diagrams. Resolving them may require summing over several amplitudes convertly.
- · Not all loop diagrams suffer from this complication. electron magnetic moment is one example.