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There is a nice way to interpret this result. Let's write 8L
or
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By the analysis above
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( a Collina- singularity) . This behavior is generic in QFT: massless

particles prefer to be emitted with low energies and along he

directions of charged particles .
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More concrete interpretation : ay real experiment will have
10L

A finite energy resolution Ere, and angular resolution Eres . Instead of

cutting off the integral with mr, use Ere
,
and Eres instead .

This is technically complicated, so we will justquote the answer 's
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Solution
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Consider e'
- e-→ n'-ri t NV, and

don't restrict fo a

fixed number of photos .

This is no longer at a Fixed order in

the coupling e
,
but corresponds better to the physical situation where

distinguishing 2 vs. 3 vs. t very low- energy photons isnt possible
in practice . Inclusive cross sections often have better convergence properties.

Lessons From this week :
-

. QFT gives infinities when you ask it dumb (unphysical)

questions. By relating amplitudes to a physically measurable

quantity, we always get finite results
.

" singularities tend to appear beyond the lowest-order diagrams
.

Resolving them may require sunning over several amplitudes

coherently .

. Not all loop diagrams suffer from this complication :

electron magnetic moment is one example .


