Before looking at commutations, let's gain some intuition for W.

$$
W_{\mu} P^{\mu}=-\frac{1}{2} \epsilon_{\text {mvp }} M^{v \rho} p^{\sigma} p^{\mu}=0 \text { since porpm is symetric but }
$$

$t_{\text {vp }}$ is antisymmetric in σ, μ
Let's apply a Lorentz trasformation such that $p^{r}=(m, 0,0,0)$.
Then $W_{i}=-\frac{1}{2} \epsilon_{i j k O} M^{j k} p^{0}=m J_{i}$ whee J_{i} is the Loratz senator For rotations
Furthermore, $W_{m} p^{m}=0 \Rightarrow w_{0} p_{0}-\vec{w} \cdot \vec{p} \Rightarrow w_{0}=\frac{\vec{w} \cdot \vec{p}}{p_{0}}=O($ since $\vec{p}=0)$, So $W_{m}=(0, n \vec{j})$
$W^{2} \equiv w_{m} W^{\mu}=-n^{2} \vec{\jmath} \cdot \vec{\jmath} \longleftarrow$ related to total spin J^{2}
Note: this only works if $n>0$!! will come back to $n=0$.
Claim: W ${ }^{2}$ commuter with all P^{m} and $M^{m v}$
To show this, first compute $\left[w_{\mu}, p^{\nu}\right]$ and $\left[w_{\mu}, \mu^{p o r}\right]$

$$
\begin{aligned}
& \text { Then }\left[w^{2}, p^{v}\right]=w^{\mu}\left[w_{r}, p^{v}\right]+\left[w^{\mu}, p^{v}\right] w_{r}, \text { etc, } \\
& {\left[\begin{array}{rl}
{\left[w_{r}, p^{v}\right]} & =-\frac{1}{2} \epsilon_{m \alpha \beta r}\left[M^{\alpha \beta} p^{v}, p^{v}\right] \\
& =-\frac{1}{2} \epsilon_{\mu \alpha \beta r}\left(M^{\alpha \beta}\left[p^{r} / p^{v}\right]+\left[M^{\alpha \beta}, p^{v}\right] p^{v}\right) \\
& =-\frac{1}{2} \epsilon_{\mu \alpha \beta r}(i)\left(\eta^{\alpha v} p^{\beta}-\eta^{\beta v} p^{\alpha}\right) p^{v}
\end{array}\right.}
\end{aligned}
$$

But $p^{\text {spr}} p^{\text {is symmetric, so }} \in$ symbol kills it: $\left[w_{m}, p^{v}\right]=0$
Con also show $\left[W_{\mu}, M^{\rho \sigma}\right]=-i\left(\delta_{\mu}^{\sigma} w^{\rho}-\delta_{\mu}^{\rho} W^{\sigma}\right)$
and have $\left[W^{2}, m^{p o}\right]=0 \quad(H W)$

We have now shown that W^{2} is a Casimir geeator for the Poincare group. It is Lorentz-invariant, so for a massive particle, we can evaluate in a frame where $p^{n}=(n, 0,0,0)$ So $\quad w^{2}=-n^{2} j \cdot \vec{j}$
Recall from the first lecture that $\vec{A}=\frac{\vec{j}+i \hat{k}}{2}, \vec{B}=\frac{\vec{J}-i \vec{k}}{2}$

$$
\Rightarrow \vec{J}=\vec{A}+\vec{B}
$$

Reps of loretz group are labeled by halt-inte,er spins j_{1}, j_{2}, so this is like adding spins in QM'. \vec{j} can have Spins $j=\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots j_{1}+j_{2}$, with $\vec{j}^{2}=j(j+1)$
But W^{2} is a Casimir operator so it uni, takes ore value; which one?
Some easy cases: (0,0) rep has $j_{1}=j_{2}=0$ so $j=0$: tHese are spin-o particles.
$\left(\frac{1}{2}, 0\right)$ or $\left(0, \frac{1}{2}\right)$ reps. have $j_{1}=\frac{1}{2}$ and $j_{2}=0$ or vice-vesa: again, only one possible value of $j, j=\frac{1}{2}$, so these are spin $-\frac{1}{2}$ particles more interesting:
($\frac{1}{2}, \frac{1}{2}$) rep. has $j_{1}=j_{2}=\frac{1}{2}$, so $j=1$ or 0 . In QFT, this will describe spin-1 particles, but we will need an additional constraint in the equations of notion to project out the $j=0$ component.

What about massless particles) $P^{2}=0$, so we cant so to a frame where $p^{m}=(m, 0,0,0)$. The best we can do is to take $p^{\mu}=(k, 0,0, k)$ and pick a direction for \vec{p} since $\vec{p} \neq 0$.

In this frame,

$$
\begin{aligned}
& W_{0}=-\frac{1}{2} \epsilon_{0: j k} M^{i j} p^{k}=\vec{j} \cdot \vec{p} \\
& w_{i}=-\frac{1}{2} \epsilon_{i j k} M^{j k} p^{0}-\frac{1}{2} \epsilon_{i 0 j k} M^{0 j} p^{k} \\
& \text { egg. } w_{1}=+M^{23} p^{0}+M^{02} p^{3}=k\left(M^{23}+M^{02}\right) \\
& W_{M} p^{M}=0 \text {, so } w^{0} p^{0}-w^{0} p^{0}-w^{0} p^{0}-w^{3} p^{3}=0 \\
& w^{0} p^{0}=w^{3} p^{3} \\
& \Rightarrow w^{3}=\frac{w^{0} p^{0}}{p^{3}}=\vec{j} \cdot \vec{p} \frac{k}{k}=J-\vec{p}
\end{aligned}
$$

It twas out (with more group theory) that a consistat finite-dimasional rep. with $P^{2}=0$ is ans possible if $W^{2}=0$ also. In this case we know the emaining, comporetst; $w_{1}=w_{2}=0$ (ie ley act as 0 on a cpecentation: called the little group which fixes $(k, 0,0, k)$) so $W^{m}=(\vec{\jmath}, \vec{p}, 0,0, \vec{J} \cdot \vec{p})$.

In other words, $\underline{W}^{m} \alpha p^{m}$ with a constant of proportionality $h=\frac{\vec{J} \cdot \vec{p}}{|\vec{p}|}=J_{2}$, called telicity. Again, 6) considering $\vec{J}=\hat{A}+\vec{B}$, the possible values for h are analogous to adding z-components of spin (0,0) rep. $j_{1,2}=j_{h, 2}=0$, so $h=0 \Rightarrow$ spin-0
$\left(\frac{1}{2}, 0\right)$ rep: $h=-\frac{1}{2}$ or $+\frac{1}{2} \Rightarrow$ two distinct spin- $\frac{1}{2}$ representation! $h=-\frac{1}{2}$ and $h=+\frac{1}{2}$ characterize different physical states which don't mix under Lorentz
$\left(\frac{1}{2}, \frac{1}{2}\right)$ cp: $h=-1,0(\times 2), o r+1 \Rightarrow$ spin -1 , but $h=0$ states are uphysical. Compared to $n>0$, there is an extra $h=0$ state which we will have to get cid of with gauge invariance.

Unitary representations and Lagrangions
We have seen how to classify representations of the Poincare group b) mass and spin. We now wont to write down equations of motion for elementary particles, which are invariant under Poincare transformations and obey the rules of quantum recharics.

We could start with the schrodinger equation,

$$
i \hbar \frac{\partial}{\partial t}|\psi, t\rangle=\hat{H}|\psi, t\rangle
$$

but there are two problems:

- time is treated separately from space. t is a variable but \hat{x} is an operator. This is explicitly not lorentz invariant.
- we cont describe particle creation! E.9. in $e^{+} e^{-} \rightarrow r r$, an election and a position are destroyed and two photons we created. In nun-relativistic $Q M$, conservation of probability forbids this.
The solution to 60 th ocese problems is (perhaps not obviously) quentern fields: a collection of quantum operators at each point in spacetime which evolve in the Heisenberg picture as $\hat{\phi}(t, \vec{x})=e^{i \hat{H} t} \hat{\phi}(0, \vec{x}) e^{-i \hat{H} t} \leftarrow$ here, \vec{x} is just a label, not an operator(in all of what follows, we will set $\hbar=c=1$, natural wits)
Relativistic insuatace is ensured G making sure \hat{H} (when is built out of $\hat{\theta}$ and other fields) transforms appropriately under Poincare.
We will bake this in from the beginning by constructing Lagrangions, Poincari-invariant furctionals of quantum Fields, from which we con dive equations of notion using, the Euler-Lagrane equations.

In QM, symmetries are implemented by unitary operators. we will justify the following transformation rules for quantum fields y :
Spacetime $(\Lambda, a) \cdot \varphi(x) \xrightarrow{(\Lambda, a)} \varphi^{\prime}(x)=\underbrace{u^{+}(\Lambda, a) \varphi(x) U(\Lambda, a)}_{\text {abstract implementation }}=R(\Lambda) \cdot \varphi\left(n^{-1} x-a\right)$
of Poincare trastumation
explicit implematation by miters optators
Internal: $\varphi(x) \xrightarrow{g} \varphi^{\prime}(x)=u^{+}(g) \varphi(x) U(g)=R(g) \cdot \varphi(x)$
by a represcitation
matrix R and a
shift of coordinates
in the argurat of 6
argument of φ is unchanged for infernal symmetries.
Recall a witary operator U satisfies $u^{+} u=\mathbb{1}$ so $u^{+}=u^{-1}$. We will use daggers and inverses interchangeably when dealing with witty operators.

Coleman-Mandula theorem: a consistent relativistic quantum theory can only have the symmetries of Poincare times an internal symmetry group G," so once we have specified G and chosen the representations $R(g)$, we will have fully specified ow quantion field theory of elementary particles.

Why unitas? We wat a symmetry operation to preserve inner products. If a state $|\alpha\rangle$ ternsforns as $U|\alpha\rangle$, then for an operator θ, $\langle\alpha| \theta|\alpha\rangle \rightarrow\langle\alpha| u^{+} \theta u|\alpha\rangle$. For these to be the sure, in the Heisenberg, picture where stakes are fixed and operators transform, we must have $\theta \rightarrow u^{+} \theta u$. Taking $\theta=\mathbb{1}$ implies $u^{+} u=\mathbb{1}$.

We have alread, discussed how $\varphi(x)$ is a collection of quantum operators labeled by x^{μ}, so this justifies the abstract frastormation rule $p \rightarrow U^{+} y U$. An equivalut way of realizing this symmetry is to let φ itself transtom in a representation R.
\$ loophole; supersymmety! But this is the ans one we know of, and it doesn't describe me standard model.

In this course (as opposed to QFT) we are mare interested in the symmetry transformations on fields, but these are equivalent descriptions (ie. there is a vell-defind prescription to- castructiry $u(g)$)

Algorithm for constructing $Q F T$ of elementary particle interactions:

- Write down an action $S[\varphi]=\int d^{4} \times \mathcal{L}\left[\varphi, \partial_{n} \varphi, \ldots\right]$ which is a scalar functional of the fields
- by construction, ensure S is invainat under Poincoré and an other desired internal symmetries
- Find equations of motion by variational principle $\delta S=0$ - these equations will respect the same symmetries as 5 itself
- The quadratic piece of \mathcal{L} describer free (non-interacting) fields. Fowier-transtorm these fields into opentors which create free particles with definite momentum k^{m}
- these plare-uave solutions will satisfy a dispersion relation $k^{\mu} k_{n}=n^{2}$ appropriate for relativistic porticks
- the spin of the particle is determined by the Porncari classification, ie eigenvalue of W^{2} (though we were not rigorous about it, we were looking at unitary representations on states).
(this notation is standard)

$$
\begin{array}{llll}
\text { Spin -0: } & (0,0) & \phi(x) & \rightarrow \phi\left(\Lambda^{-1} x\right) \\
\text { spin- } \frac{1}{2}: & \left(\frac{1}{2}, 0\right) \text { ardor }\left(0, \frac{1}{2}\right) & \psi_{\alpha}(x) & \rightarrow L_{\alpha}^{3} \psi_{b}\left(\Lambda^{-1} x\right) \\
\text { Spin-1: } & \left(\frac{1}{2}, \frac{1}{2}\right) & A_{\mu}(x) & \rightarrow M_{\mu}^{v} A_{V}\left(\Lambda^{-1} x\right) \tag{1}
\end{array}
$$

these three are sufficient to describe all particles in the $S M$

- The cubic and higher pieces of α describe interactions. If ire coefficists ("coupling constants") are small, can write down a perturbative expansion \Rightarrow Feynman diagrams

