
>
Before looking at commutations

,

let's gain some intuition fo- W.
✓

Wnpn = -

'

zfnupom
" Po pm = 0 since pop- is symmetric but

Grupo is antisymmetric in o
, n

Let's apply a Lorentz transformation such that P
-

= (m
, 0,0, o) .

Then W ;
= - I Eino Mik Po = m Ji whee Ji is the Lorentz generator

For rotators

Furthermore
,
Wmpn -- o =3 Wo Po - T - I =3 Wo = TIPI E O (since F --O),

so Wn
-

- ( o
,

MT )

W' = Wnw = - m
- J - J ← re laced to total spin J

-

Note : this only works if m > 0 ! ! Will come back to m
-

- O
.

-

- -
-
- - -

-
- -

-

claim : W
-

commie , with all pm and M- ✓

To show this
,
first compute [Wu

,
PV) and (Wn

,
M
"

]

Then few, f) = WTwr.PT + Cw ; 'm]Wn
,

etc .

[Wr
,
PT -

-
- { Emaar@

" Pr
,
pv)

= - then .me/mmlpr/,PvJtfmYpvJpr)
= - ttnanrfi ) ( gape - you pay pv

But PB Pr is symmetric , so E symbol kills it : (Wn
,
Pu) = 0

Can also show (Wn
,

M
" ) -- - i ( of we - of Wo)

and here [ w ; m
"
7=0 ( Hw)
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We have now shown that W
"

is a Casimir apeafo- for
↳

the Poincare group . It is Lorentz- invariant, so for a massive

particle , we can evaluate in a frame wk-e Pm-- (n
,
o
,
o
,
o)

so w
-

= -n
- J -J

Recall from the first lecture that A=Jt , B=J-
2

⇒ J -- AIB

Reps of Lorentz group are labeled by half- integer spins
ji
, in , so this is like adding spins in Qm

'

.
I can hare

spins j -- Ij
,

- id
,

b-rid + I
,
. .
- jitsu

,
with J

-

= jljtl )

But W
-

is a Casimir operate- so it only takes org value;
which one?

Souses : (o, o ) rep. has j,=jn= 0 so j
-

- O : these are

sp particles .

(t , o ) or ( o, t ) reps . have j , = 's and Ju -- O o- vice-versa ! again
,

only one possible rate of j , j
-

- I , so these arepdes

more interesting:
-

( tu ,
'

z) rep . has j , -- Jr -- I , so j = to 0
.
In QFT

,
this will

describe spit particles , but we will need an additional constraint

in the equations of motion to project out the j=o component.

- -
- -

- -
-
-
-

What about massless particles? P! O
,
so we can 't go to a Frame

-

where pin -- In, o, o, ol . The best we can do is to take

Pm = ( k
, 0,0 , k ) and pick a direction fo- T since F #O .
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In this frame

,

Wo = -Itoi ; a M
"

pk = Tip

w;
=

- IE ; ; no
Mik Po - It ; o ; nm

"
ph

e. g. W,
-

- t M
"

p
°

t Mor p 's = k (M
"
tMa)
O

Wn p
- -

- O
,

so Wo po - wtf ?- Wfp'-Wp ' = o
Wo Po -- W

'

p
)

⇒ w
'
= wp.IS = J -T ÷=J - f

It turns out (with more group theory) that a consistent finite - dimensional

rep . with P
-
-

- O is only possible if we
-

- O also
.

In this case

we know the remaining components : W
,
= Wz -- O ( i.e they act as 0 on a rep-esefatron

'

.

Called the little which fixes (k
,
o
, o,
k) ) so ✓= (J - T

, 0,0, I -B) .

In other words
,

Wxpn with a constant of proportionality
-

h = Tippy -- Ja , called helicity . Again
, by considering J = Itb

,
the possible

values for h are analogous to adding z- components of spin
-

(o
,
o ) rep

'

.
I

, ,z= Ina
-

- O
, so

h -- O = > spin
- O

C 's , o) rep : h = -Z o- t 's ⇒ two distinct spin - I representations!
h = - 'z and h =

t 's charactera direct

physical States which don't mix under Lorentz

( 'z, tu ) rep : h
-

- - l
,
O (xn

,
or + I => spin - I

,
but h -- o states are wphysical .

Compared to m >0
,
there is an extra

h = 0 state which we will have to get
rid of with gauge invariance
-

-



Unitary representations and Lagrangian,
I
-

We have seen how to classify representations of the Poincare

group by mass and spin . We now want to write down equations
of motion for elementary particles, which are invariant under

Poincare transformations and obey the rules of quantum mechanics.

We could start with the Schrodinger equation,

it # It
,
t> = HI It

,
t>

but there are two problems :
- time is treated separately fro- space : t is a variable but I is
an operator. This is explicitly not Lorentz invariant.

- we can't describe particle creation ! E. g . in e
't
e

-

→ Vr
,

an electron and a position a-e destroyed and two photos

are created
. In non - relativistic QM

,
conservation of probability

forbids this
.

The solution to both these problems is (perhaps not obviously )

quantum fields : a collection
of quark- operates at each point

-

in spacetime which evolve in the Heisenberg picture as

§ ( t
,
I ) = eiht§ ( o, I ) e

-i # t
← he -c

,

I is just a label, zot on operate-

( in all of what follows , we
will set F-c

-

- l : natural units)

Relativistic invariance is ensured by making sure it (which is built out

of § and other fields) transforms appropriately
under Poincare.

We will bake this in from the beginning by constructing tagging
,

Poincare' - invariant Functionals of quantum fields, from which we
-

can derive equations of motion using the Euler-Lagrange

equations.



In QM
,
symmetries are implemented by unitary operators

£
-

-

we will justify the following transformation rules fo- quantum fields y !

(n, a)

Spacetime (n, a ) : ecx ) → y
'

Cx ) = Utca
,

a) ylxlucn, a) = RCN - yin
- '
x - a )

-
-

abstract implementation
explicit implementation

of Poincare transformation by a representation
by unitary operators matrix R and a
acting on Hilbert space shift of coordinates

Internal : Y Ix )
↳

y
'

(x ) = Utlglycx) Ucg ) = Rig , .gg,
in the asmat of y

argument of y is
unchanged fo- in symmetries

.

Recall a unitary operator U satisfies Utu
-

- 1,1 so Ut -- W
'

.

We will use

daggers and inverses interchangeably when dealing
with unitary operators .

Coleman - Mandala theorem : a consistent relativistic quantum theory
can only have the symmetries of Poincare times an internal symmetry group GF
so once we have specified G and chosen the representations RG )

,
we will

have fully specified our quantum field theory of elementary particles .

Why unitary? We want a symmetry operation to preserve inner products . If a
state K> transforms as UK>, then fo- ay operator O,

< a lot a> → at Ut outa> .
For these to be the sane

,
in the

Heisenberg picture where States are fixed and operators transform
,

we must have 0→ UtOU
. Taking 0=11 implies Utu -

- I
.

We have already discussed how CK ) is a collection of quark- operators

labeled by Xm
,
so this justifies the abstract transformation rule

( → Ut y U .

An equivalent way of realizing this symmetry is

to let y itself transform in a representation R .

A loophole : supersymmetry ! But this is the only one we know of
, and it doesn't

describe the standard Model .
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In this course (as opposed to QFT) we are more interested

L
in the symmetry transformations on fields

,

but these are

equivalent descriptions ( i.e. here is a well-defined prescription fo- constructing UG))

Algorithm for constructing QFT of elementary particle interactions
'

.

• Write down an action SCE ) -- Sdk Lce
, he , . . . ) which is

a scalar functional of the fields

- by construction, ensure S is i t under Poincare and
any

other desired internal symmetries

^ Find equations of motion by variational principle JS = O

- these equations will respect the sa-e symmetries as S
-

itself

^ The quadratic piece
of L describes free (non - interacting )

- -

fields
.
Fourier - transform these fields into operators which

create free particles with definite momentum kn

- these plane - ware solutions will satisfy a dispersion relation
ten km = m

-

appropriate for relativistic particles
- the spin of the particle is determined by the Poincare

classification , i - e - eigenvalue of✓( though we were not rigorous
about it, we were looking at unitary representations on

States ) : (this notation -

is standard )

spin
- o : co

,
o ) 41×1 → Oca 'x)

spin - ti. (I , o) audio- ( o, I ) tall → LEX, ( n
- '

x)
spin- I

-

. (I, Ankles Minar In
- '
x )

these three are sufficient to describe all particles in te Sm

r The cubic and higher pieces of L describe interactions
. If the

- -

coefficients (" coupling constants") are small, can write down a

perturbative expansion => Feynman diagrams
-


