Representations of the Poincaré group

The world has more symmetries than just Lorentz transformations. translations in space and time. These translations form a group too; \mathbb{R}^4 , since we can write $x^m \rightarrow x^n + \lambda^n$ as a A-vector.

Combine translations with rotations and boosts? Have to be a bit careful because translations and rotations don't commute. Correct structure is a semi-direct product: if α and β are translations, and f, g are horentz transformations, $(x, f) \cdot (\beta, g) \equiv (x + f \cdot \beta, f \cdot g)$ $\int_{\alpha} \int_{\beta} \int_$

X + F.B is also a A-vector, so it can describe a traslation => (Lis is a group, IR * X SO(3,1)

At this point it's north reviewing some convenient notation for Lorentz transformations. In the defining representation, a Lorentz transformation Λ is a 4x4 matrix Λ^{*}_{v} Covariant vectors V_{m} transform by matrix multiplication: $V_{m} \xrightarrow{\wedge} \Lambda^{v}_{m} V_{v}$ ($\equiv \Lambda \cdot v$, contract top matrix index) Contravariant vectors transform with the transpose of Λ : $W^{m} \xrightarrow{\wedge} \Lambda^{*}_{v} W^{v}$ ($\equiv W \cdot \Lambda^{T}$, contract bottom matrix index)

Locale trasformations preserve the hot product under
$$q$$
:
 $V_{n} W^{n} \equiv q_{nv} V^{n} W^{v} \equiv WqV = VqW$
Perform Lorente trasformation Λ :
 $WqV \rightarrow (W\Lambda^{T}) q(\Lambda v) = W(\Lambda^{T}q\Lambda)V = Wq^{-1}V = WqV$
 $V = WqV$
 $V = (W\Lambda^{T}) q(\Lambda v) = W(\Lambda^{T}q\Lambda)V = Wq^{-1}V = WqV$
 $V = VqV$
 $V = VqV$
 $V = (W\Lambda^{T}) q(\Lambda v) = W(\Lambda^{T}q\Lambda)V = Wq^{-1}V = WqV$
 $V = VqV$
 $V = VqV$
 $V = (W\Lambda^{T}) q(\Lambda v) = W(\Lambda^{T}q\Lambda)V = Wq^{-1}V = WqV$
 $V = VqV$
 $V = V^{-1}V$
 $V = VqV$
 $V = V^{-1}V$
 $V = VqV$
 $V = V^{-1}V$
 $V =$

Let's revisit the Lie algebra of the Loratz group, but
now with Einstein index notation.

$$M = 1 + \epsilon X \longrightarrow \Lambda_{v}^{v} = \delta_{v}^{v} + \epsilon w_{v}^{v} \quad (w \text{ are entries of matrix } X)$$

$$M = 1 + \epsilon X \longrightarrow \Lambda_{v}^{v} = \delta_{v}^{v} + \epsilon w_{v}^{v} \quad (w \text{ are entries of matrix } X)$$

$$M = 1 \longrightarrow \eta_{v_{\lambda}} \wedge_{\rho}^{\lambda} \eta^{\rho \sigma} \wedge_{\sigma}^{m} = \delta_{v}^{\sigma}$$

$$P \log in'. \quad \eta_{v_{\lambda}} \left(\delta_{\rho}^{\lambda} + \epsilon w_{\rho}^{\lambda} \right) \eta^{\rho \sigma} \left(\delta_{\sigma}^{m} + \epsilon w_{\sigma}^{n} \right) = \delta_{v}^{m}$$

$$\delta_{v}^{\sigma} + \epsilon \eta_{v_{\lambda}} w_{\rho}^{\lambda} \eta^{\rho \sigma} \delta_{\sigma}^{n} + \epsilon \eta_{v_{\lambda}} \delta_{\rho}^{\lambda} \eta^{\rho \sigma} w_{\sigma}^{n} + O(\epsilon) = \delta_{v}^{m}$$

$$\epsilon \eta_{v_{\lambda}} \eta^{\rho n} w_{\rho}^{\lambda} + \epsilon \eta_{v_{\lambda}} \eta^{\lambda \sigma} w_{\sigma}^{n} = 0 + o(\epsilon)$$

$$\eta^{\rho m} w_{\rho}^{\lambda} + \eta^{\lambda \sigma} w_{\sigma}^{n} = 0 \quad (factor out \eta_{v_{\lambda}})$$

$$w^{\lambda m} + w^{-\lambda} = 0$$

A greed infinitesimal Loratz transformation (on be written

$$X = \frac{i}{2} W_{nv} M^{nv} = i \left(W_{01} M^{01} + W_{02} M^{02} + W_{03} M^{03} + W_{12} M^{12} + W_{13} M^{13} + W_{23} M^{23} \right)$$

$$IF we take M^{10} = -M^{01} = K^{i} \text{ and } M^{i3} = -M^{3i} = E^{i3k} J^{k}, we can write$$

$$X = i \begin{pmatrix} 0 & W_{01} & W_{02} & W_{03} \\ W_{01} & 0 & -W_{12} & W_{13} \\ W_{02} & W_{12} & 0 & -W_{13} \end{pmatrix} = X^{n}_{B_{1}} = 4 \times 4 \text{ metrix with}$$

$$Alternative parameterization: X = i\overline{B} \cdot \overline{J} + i\overline{B} \cdot \overline{K} \quad (B_{i} = W_{0i}, B_{i} = 6ijk Wjk)$$

Covariant notation:
$$(M_{\rho}^{m\nu})_{\beta}^{\alpha} = i \left(q^{m\alpha} \mathcal{J}_{\rho}^{\nu} - q^{\nu\alpha} \mathcal{J}_{\rho}^{n} \right)$$

gents 1
(ale 1) merix
intex
 $e_{x.} (M^{01})_{\theta}^{\alpha} = i \left(q^{\nu\alpha} \mathcal{J}_{\rho}^{1} - q^{1\alpha} \mathcal{J}_{\rho}^{\alpha} \right) = i \left(\begin{matrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right) = -K_{x}$
 $+1 \quad if \quad x = 0, \beta = 1$
 $1 \quad if \quad x = 0, \beta = 1$

Now can compute commutator:

$$\begin{bmatrix} M^{nv}, M^{pr} \end{bmatrix}_{\theta}^{x} = (M^{nv})_{T}^{v} (M^{pr})_{\theta}^{v} - (M^{pr})_{\theta}^{v} (M^{pv})_{\theta}^{v}$$

$$= -(\eta^{nx}J_{v}^{v} - \eta^{vx}J_{v}^{v})(\eta^{pv}J_{\theta}^{v} - \eta^{rv}J_{\theta}^{v}) + (\eta^{rx}J_{v}^{v} - \eta^{rx}J_{v}^{v})(\eta^{nv}J_{\theta}^{v} - \eta^{vv}J_{\theta}^{v})$$

$$= -\eta^{vx}\eta^{pv}J_{\theta}^{x} + \eta^{rx}\eta^{v}J_{\theta}^{x} + (3\sin lv)$$

$$= -i\eta^{vp}i(\eta^{rx}J_{\theta}^{v} - \eta^{nx}J_{\theta}^{v}) + (3\sin lv)$$

$$= -i\eta^{vp}(M^{pr})_{\theta}^{v} + (3\sin lv)$$

$$= \sum (M^{nv}, M^{pr}) = -i (\eta^{np}M^{vr} - \eta^{nr}M^{vp} + \eta^{vr}M^{nr} - \eta^{vp}M^{nr})$$

$$\frac{1}{1} \sum_{\substack{i=1\\ j \neq i}}^{N} (\eta^{rx}J_{\theta}^{v} - \eta^{nr}J_{\theta}^{v}) + (1-\eta^{vr}M^{nr} - \eta^{vp}M^{nr})$$

$$\frac{1}{1} \sum_{\substack{i=1\\ j \neq i}}^{N} (\eta^{rx}J_{\theta}^{v} - \eta^{nr}M^{vr} - \eta^{nr}M^{vp} + \eta^{vr}M^{nr} - \eta^{vp}M^{nr})$$

$$\frac{1}{1} \sum_{\substack{i=1\\ j \neq i}}^{N} (\eta^{rx}J_{\theta}^{v}) = (1-\eta^{rx}J_{\theta}^{v}) + (1-$$

 $\begin{aligned} \text{Infinitesimal traslation is still a vector, let's call it pr:} \\ P^{o} = i \left(\begin{array}{c} 0 & i \\ - & \overline{0} & \overline{10} \end{array} \right), P^{i} = i \left(\begin{array}{c} 0 & i \\ - & \overline{0} & \overline{10} \end{array} \right), e^{i} t_{c}. \\ \hline 0 & i & 0 \end{array} \right), e^{i} t_{c}. \\ \hline D^{m}, P^{v}] = D \quad (Hw 2) \end{aligned}$

One last commutation relation to compute: $\begin{bmatrix} M^{mv}, P^{\sigma} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} (M^{*v})_{i}^{k} & 0 \\ - & -i \\ 0 & -$

So this is propertional to some
$$P$$
 (Lorentz group part is zero)
 $i\left(g^{mx} \mathcal{F}_{A}^{\nu} - \eta^{\nu \alpha} \mathcal{F}_{A}^{m}\right)(P^{\sigma})_{x}$
Rut by the way we defined P , $(P^{\sigma})_{x} = i \mathcal{F}_{x}^{\sigma}$, so

$$\begin{bmatrix} M^{n\nu}, P^{\nu} \end{bmatrix}_{\beta} = -\eta^{n\nu} \mathcal{J}_{\beta} \mathcal{J}_{\alpha} + \eta^{\nu\alpha} \mathcal{J}_{\beta} \mathcal{J}_{\alpha}^{\sigma}$$
$$= i\eta^{n\sigma} (i\mathcal{J}_{\beta}^{\nu}) - i\eta^{\nu\sigma} (i\mathcal{J}_{\beta}^{\nu})$$

 $\left[M^{\mu\nu}, p^{\sigma} \right] = i \left(M^{\mu\sigma} p^{\nu} - M^{\nu\sigma} p^{\mu} \right)$

We now have the complete commutation relations for the Lie algebra of the Poincaré goug.

$$\begin{bmatrix} \mathcal{M}^{\mu\nu}, \mathcal{M}^{\rho\sigma} \end{bmatrix} = -i \left(\mathcal{M}^{\mu\rho} \mathcal{M}^{\nu\sigma} - \mathcal{M}^{\mu\sigma} \mathcal{M}^{\nu\rho} + \mathcal{M}^{\nu\sigma} \mathcal{M}^{\mu\rho} - \mathcal{M}^{\nu\rho} \mathcal{M}^{\mu\sigma} \right)$$

$$\begin{bmatrix} \mathcal{M}^{\mu\nu}, \rho^{\sigma} \end{bmatrix} = i \left(\mathcal{M}^{\mu\sigma} \rho^{\nu} - \mathcal{M}^{\nu\sigma} \rho^{\mu} \right)$$

$$\begin{bmatrix} \mathcal{P}^{\sigma}, \rho^{\nu} \end{bmatrix} = 0$$

Note that while we derived these using a particular 5×5 representation OF the Lie algebra, they hold in general as abstract operator relations.

Casimir operators

Now that we have the algebra, what can we do with it? It we find an object that commutes with all greaters, a theorem from math tells us it must be proportional to the identity operator on any irreducible representation i this is called a Casimir operator. Irreducible <=> can't write ag block-diagonal like $\left(\begin{array}{c}
R_{1} & O \\
- & I \\
O & I \\
R_{1}
\end{array}\right)$ Here's one Casimir operator: p² = pⁿp_n Proof: [P, Po] = O since all p's commute $[P^{n}, M^{n}] = P^{n}[P_{n}, M^{n}] + (P^{n}, M^{n})P_{n}$ $(u_{Sing}(AB, C) = A[B, C] + (A, C]B)$ $= p^{n} \left(-i \int_{n}^{p} p^{\sigma} + i \int_{n}^{\sigma} p^{\rho} \right) + \left(-i \int_{n}^{n} p^{\sigma} + i \int_{n}^{\sigma} p^{\rho} \right) P_{n}$ = -ippo+ipopp -: ppo+; popp P's commute, so each term cancels

=> p² is a constant times the identity. Let's call the constant m². We will identify it with the physical squared mass of a particle. The Poincaré algebra has a second Casimir, but it's a bit trickie. Let's define $W_m = -\frac{1}{2} \in_{mvpo} M^{vp} p^{\sigma}$ (Pauli-tubaski pseudovector) $\in_{mvp\sigma}$ is the totally antisymmetric tensor with $\in_{0123} = -1$