Representations of the Poincare group
The world has more symmetries than just Lorentz transformations": translations in space ad time. These translations form a group too: \mathbb{R}^{μ}, since we can write $x^{\mu} \rightarrow x^{\mu}+\lambda^{\mu}$ as a 4 -vector.

Combine translations with rotations and boosts? Have to be a bit careful because translation and rotations doit commute. Correct structure is a semi-direct product: if α ad β are translations, and f, g are lorentz tronstornctions,

$$
\begin{aligned}
& (\alpha, f) \cdot(\beta, g) \equiv(\alpha+f \cdot \beta, f \cdot g) \\
& \prod_{\text {ph Loenta }} \overbrace{\text { usual multiplication }} \\
& \text { trust. \& to law tran last lecture } \\
& \text { trantation para. } \\
& \beta \text {, then troslect } \\
& \text { b) } \alpha \\
& \alpha+f \cdot \beta \text { is also a 4-rector, so it can describe a translation } \\
& \Rightarrow \text { this is a group, } \mathbb{R}^{4} \times S O(3,1)
\end{aligned}
$$

At this point it's worth reviewing some convenient notation for Lorentz transformations. In the defining repesectation, a lorentz transformation Λ is a 4×4 matrix Λ^{n} 。 Covariant vectors V_{μ} transom by matrix multiplication:

$$
V_{\mu} \xrightarrow{\wedge} \Lambda_{\mu}^{v} V_{v} \quad(\equiv \Lambda \cdot v, \text { contact top matrix index })
$$

Contravriant vectors transform with the transpose of n :

$$
W^{\mu} \xrightarrow{n} \Lambda^{\mu}{ }_{v} W^{\nu} \quad\left(\equiv W \cdot \Lambda^{\top}\right. \text {, contract bottom matrix index) }
$$

Lorentz trastornctions preserve the dot product under 7':

$$
V_{\mu} w^{\mu} \equiv \eta_{\mu \nu} V^{\mu} w^{V} \equiv W \eta V=V \eta W
$$

perform lorentz trastomation Λ :

$$
W \eta V \rightarrow\left(W \Lambda^{\top}\right) \eta(\Lambda V)=W\left(\Lambda^{\top} \eta \Lambda\right) V=W \eta_{\text {derfuntion of } 50(\xi, 1)}^{W} V=W \eta V
$$

with Einstein notation, raise ad lower indices with η : Car convert covariant \rightarrow contravariant by $V^{\mu}=\eta^{\mu v} v_{v}$, and this way we never seed to write explicit factors of η or keel track of transposes.
Transposes and inverses ore related by defining equation: $\eta \Lambda^{\top} \eta \Lambda=\mathbb{1} \Rightarrow \Lambda^{-1}=\eta \Lambda^{\top} \eta$ or $\left(\Lambda^{-1}\right)^{\mu}{ }_{v}=\eta_{\alpha v} \eta^{\beta} \Lambda^{\alpha}{ }_{\beta} \equiv \Lambda_{v}^{\eta}$, So doit need to kep track of inverses either.
Tensors have more than one index: each lower index transforms with a factor of Λ, each upper index w / Λ^{\top}
e. . $\quad T_{\mu \nu} \rightarrow \Lambda_{\mu}^{\alpha} \Lambda_{v}^{\beta} T_{\alpha \beta}$
 note: order docent
matter wen me wite indies explicify
Lorentz-inumiat quantifies have indices fully contracted: we know $V^{\mu} V_{\mu}$ or $T_{\mu v} T^{\mu v}$ doe, not change under a Lorentz transformation just by looking at it.

Just to check: $V^{\mu} V_{\mu} \rightarrow \Lambda^{\mu}{ }_{V} V^{v} \Lambda_{\mu}^{\rho} V_{\rho}$

$$
\begin{aligned}
& =\left(\Lambda^{-1}\right)^{\mu} \Lambda^{\prime} \Lambda_{\mu}^{\rho} V^{v} V_{\rho} \\
& =\delta_{v}^{\rho} V^{v} V_{\rho} \\
& =V^{v} V_{v} \quad
\end{aligned}
$$

Let's revisit the Lie algebra of the Lorentz group, but now with Einstein index notation.

$$
M=1+\epsilon X \longrightarrow M_{v}^{\mu}=\delta_{v}^{\mu}+\epsilon w_{v}^{M} \quad(w \text { are entries of matrix } \quad X)
$$

$$
\eta M^{\top} \eta M=\mathbb{1} \longrightarrow \eta_{v \lambda} \Lambda_{\rho}^{\lambda} \eta^{\rho \sigma} \Lambda_{\sigma}^{\mu}=\delta_{v}^{\mu}
$$

Plug in: $\quad \eta_{v \lambda}\left(\delta_{\rho}^{\lambda}+\epsilon w_{\rho}^{\lambda}\right) \eta^{\rho \sigma}\left(\delta_{\sigma}^{\mu}+\epsilon w_{\sigma}^{\hat{j}}\right)=\delta_{v}^{n}$

$$
\begin{aligned}
& \delta \%+\epsilon \eta_{v \lambda} w^{\lambda} \rho \eta^{\rho \sigma} \delta_{\sigma}^{\mu}+\epsilon \eta_{v \lambda} \delta_{\rho}^{\lambda} \eta^{p \sigma} \omega_{\sigma}^{\mu}+\theta\left(\epsilon^{2}\right)=\delta / v \\
& \epsilon \eta_{v \lambda} \eta^{\rho \mu} w_{\rho}^{\lambda}+\epsilon \eta_{v \lambda} \eta^{\lambda \sigma} \omega_{\sigma}^{\mu}=0+\theta\left(\epsilon^{2}\right) \\
& \left.\eta^{\rho \mu} \omega_{\rho}^{\lambda}+\eta^{\lambda \sigma} \omega_{\sigma}^{\mu}=0 \quad \text { (factor out } \eta_{v \lambda}\right) \\
& w^{\lambda \mu}+w^{\mu \lambda}=0
\end{aligned}
$$

$\Rightarrow w$ is an antisymmetric 2 -index tensor w 16 indepedat comperes
A gereal infinitesimal Lorentz transformation can be written

$$
X=\frac{i}{2} \underbrace{\omega_{m v}}_{\text {cocefficiats }} M_{\substack{\text { generators } \\ \text { io }}}^{=}\left(w_{01} M^{01}+w_{02} M^{02}+w_{03} M^{07}+w_{12} M^{12}+w_{13} M^{13}+w_{21} M^{23}\right)
$$

If we take $M^{i 0}=-M^{0 i}=K^{i}$ and $M^{i j}=-M^{j i}=\epsilon^{i j k} j^{k}$, we ca write

$$
x=i\left(\begin{array}{cccc}
0 & w_{01} & w_{02} & w_{03} \\
w_{01} & 0 & -w_{12} & w_{13} \\
w_{02} & w_{12} & 0 & -w_{23} \\
w_{03} & -w_{13} & w_{23} & 0
\end{array}\right)
$$

三 X_{B}^{α}, , 4×4 matrix win Gindependent components

Alterative parareterization. $X=i \vec{\theta} \cdot \vec{j}+i \vec{\beta} \cdot \vec{k} \quad\left(\beta_{i}=w_{0 i}, \theta_{i}=\epsilon_{i j k} w_{j k}\right)$
Covariant notation: $\left(M_{\Gamma}^{m v}\right)_{\beta}^{\alpha}=i\left(\eta^{m \alpha} \delta_{\beta}^{\nu}-\eta^{v \alpha} \delta_{\beta}^{\mu}\right)$

$$
\begin{aligned}
& \text { ex. }\left(M^{01}\right)_{0}^{\alpha}=i\left(\eta_{,}^{0 \alpha} \delta_{b}^{\prime}-\eta^{1 \alpha} \delta_{n}^{0}\right) \quad=i\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=-K_{\alpha}
\end{aligned}
$$

Now can compute commentator:

$$
\begin{aligned}
& {\left[M^{\mu \nu}, M^{\rho \sigma}\right]_{a}^{\alpha}=\left(M^{\mu \nu}\right)_{r}^{\alpha}\left(M^{\rho \sigma}\right)_{b}^{r}-\left(M^{\rho r}\right)_{r}^{\alpha}\left(M^{\sim v}\right)_{b}^{\gamma}} \\
& =-\left(\eta^{m \alpha} \delta_{r}^{v}-\eta^{v \alpha} \delta_{r}^{\mu}\right)\left(\eta^{\rho r} \delta_{\rho}^{\sigma}-\eta^{\sigma r} \delta_{b}^{\prime}\right)+\left(\eta^{p \alpha} \delta_{r}^{\sigma}-\eta^{\sigma \alpha} \delta_{r}^{p}\right)\left(\eta^{\mu v} \delta_{p}^{v}-\eta^{v r} \delta_{\rho}^{n}\right) \\
& =-\eta^{m \alpha} \eta^{\rho \nu} \delta_{\beta}^{\sigma}+\eta^{\sigma \alpha} \eta^{\nu \rho} \delta_{\beta}^{\mu}+\left(3 \operatorname{sim}^{\prime} 1 / \alpha\right) \\
& =-i \eta^{\nu \rho} i\left(\eta^{\sigma \alpha} \delta_{\rho}^{\mu}-\eta^{\mu \alpha} \delta_{0}^{\sigma}\right)+(3 \operatorname{sim}(1 \omega) \\
& =-i \eta^{v \rho}\left(M^{\sigma \mu}\right)_{o}^{\alpha}+\left(3 \text { sim. }{ }^{\prime} \sigma_{\alpha}\right) \\
& \Rightarrow\left[\mu^{\mu v}, M^{\rho \sigma}\right]=-i\left(\eta^{\mu \rho} M^{v \sigma}-\eta^{\mu \sigma} \mu^{\nu \rho}+\eta^{v \sigma} \mu^{\mu \rho}-\eta^{\nu \rho} \eta^{\mu \sigma}\right)
\end{aligned}
$$

Paincarci transformations in matrix to rm:
$x^{m} \rightarrow x^{m}+\lambda^{n}$ con be implemated as a matrix with one extra entry':

$$
\left(\begin{array}{lllll}
1 & & & & \lambda^{0} \\
& 1 & & & \lambda^{\prime} \\
& & 1 & 1 & \lambda^{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{\prime} \\
x^{2} \\
x^{2} \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{0}+\lambda^{0} \\
x^{2}+\lambda^{1} \\
x^{2}+\lambda^{2} \\
x^{3}+\lambda^{3} \\
1
\end{array}\right)
$$

So a great Lorentz + translation can be written as

$$
\begin{aligned}
& (\lambda, \Lambda)=\left(\begin{array}{cc}
\Lambda & 1 \\
\Lambda & 1 \\
- & 1 \\
0 & 1
\end{array}\right) \\
& \left(\lambda_{1}, \Lambda_{1}\right) \cdot\left(\lambda_{2}, \Lambda_{2}\right)=\left(\begin{array}{cc}
\Lambda_{1} & \lambda_{1} \\
\hdashline 0 & \ddots
\end{array}\right)\left(\begin{array}{cc}
\Lambda_{2} & 1 \\
-0 & \lambda_{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\Lambda_{1} \Lambda_{2} & 1 \\
\hline & \lambda_{1}+\Lambda_{1} \lambda_{2} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Infinitesimal translation is still a vector, lefts call it pere:

$$
\begin{aligned}
& p^{0}=i\left(\begin{array}{cc}
0 & 1 \\
-0 & 0 \\
0 & 1 \\
0
\end{array}\right), p^{\prime}=i\left(\begin{array}{cc}
0 & 0 \\
- & \vdots \\
0 & 0 \\
0
\end{array}\right), e^{+c} \\
& {\left[p^{\mu}, p^{v}\right]=0 \quad[H W 2]}
\end{aligned}
$$

One last commutation relation to compute.:

$$
\begin{aligned}
& {\left[M^{\mu \nu}, p^{\sigma}\right]_{\beta}=\left(\begin{array}{ccc}
\left(M^{\mu \nu}\right)_{\beta} & 0 \\
\hdashline 0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i\left(\rho^{\sigma}\right)_{\alpha} \\
-0 & 1 \\
\hline 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1\left(\rho^{\sigma}\right)_{\alpha} \\
\hdashline 0 & 0
\end{array}\right)\left(\begin{array}{c:c}
\mu^{\mu \nu} & 0 \\
-0 & 0
\end{array}\right)}
\end{aligned}
$$

So this is proportional to some P (lorentz group part is zero),"

$$
i\left(\eta^{\mu \alpha} \delta_{\beta}^{v}-\eta^{v \alpha} \delta_{\beta}^{\mu}\right)(p \sigma)_{\alpha}
$$

But G the was we defined $P,(\rho \sigma)_{\alpha}=i \delta_{\alpha}^{\sigma}$, so

$$
\begin{aligned}
{\left[M^{\mu v}, \rho^{\sigma}\right]_{\beta} } & =-\eta^{\mu \alpha} \delta_{\beta}^{v} \delta_{\alpha}^{\sigma}+\eta^{v \alpha} \delta_{\rho}^{\mu} \delta_{\alpha}^{\sigma} \\
& =i \eta^{\mu \sigma}\left(i \delta_{\beta}^{v}\right)-i \eta^{v \sigma}\left(i \delta_{b}^{\mu}\right) \\
{\left[M^{\mu v}, \rho^{\sigma}\right] } & =i\left(\eta^{\mu \sigma} p^{v}-\eta^{v \sigma} p^{\mu}\right)
\end{aligned}
$$

We now hare the complete commutation relations for the Lie algebra of the Poincare group.

$$
\begin{aligned}
& {\left[\mu^{\nu v}, \eta^{\mu \sigma}\right]=-i\left(\eta^{\mu \rho} \mu^{v \sigma}-\eta^{\mu \sigma} \mu^{v \rho}+\eta^{v \sigma} \mu^{\mu \rho}-\eta^{v \rho} \eta^{\mu \sigma}\right)} \\
& {\left[\mu^{\mu v}, \rho^{\sigma}\right]=i\left(\eta^{\mu \sigma} p^{v}-\eta^{v \sigma} p^{\mu}\right)} \\
& {\left[\rho^{\mu}, \rho^{v}\right]=0}
\end{aligned}
$$

Note that while we derived these using a particular 5×5 representation of the Lie algebra, they hold in general as abstract operator relations.

Casimir operators
Now that we have the algebra, what can we do with it?
If we find an object that commuter with all geeentors, a pleven from math tells us it must be proportional to the idutrity operator on any irreducible representation: this is called a Casimir operator.

$$
\left[\begin{array}{lll}
\text { Irreducible } \Leftrightarrow \text { cant write as block-diaponal like } \\
\left(\begin{array}{c:c}
R_{1} & 0 \\
0 & R_{2}
\end{array}\right)
\end{array}\right]
$$

Here's one Casimir operator: $p^{2} \equiv p^{m} p_{m}$
Proof: $\left[p^{2}, p \sigma\right]=0$ since all ρ^{\prime} 's commute

$$
\begin{aligned}
& {\left[P^{2}, M^{\rho \sigma}\right]=P^{\mu}\left[P_{m}, M^{\rho \sigma}\right]+\left[P^{\mu}, M^{\rho \sigma}\right] P_{M}} \\
& \text { (using }[A B, C]=A[B, C]+[A, C] B) \\
& =p^{\mu}\left(-i \delta_{\mu}^{\rho} p^{\sigma}+i \delta_{\mu}^{\sigma} p^{\rho}\right)+\left(-i \eta^{\mu \rho} p \sigma+i \eta^{\mu \sigma} p^{\rho}\right) p_{\mu} \\
& =-i p^{\rho} \rho^{\sigma}+i \rho^{\sigma} \rho^{\rho}-i \rho^{\rho} \rho^{\sigma}+i \rho^{\sigma} \rho^{\rho} \\
& \text { pis comate, so each term cancels } \\
& =0
\end{aligned}
$$

$\Rightarrow P^{2}$ is a constant times the identity. Let's call the constant m^{2} : we will identify it with the physical squared mass of a particle.

The Porncari algebra has a second Casimir, but it's a bit trickier.
Lets define $W_{\mu}=-\frac{1}{2} \epsilon_{\text {nve时 }} M^{v \rho} \rho^{\sigma}$ (Pau(i-tubarki psendovector)
$\epsilon_{\text {Mvp }}$ is the totally antisymmetric tensor win $\epsilon_{0123}=-1$

