Feynman rules

$$
L_{Q E D}=\sum_{f=1}^{3} i \underbrace{i \bar{\psi}_{f} \gamma \psi_{f}-m_{f} \bar{\psi}_{\epsilon} \bar{\psi}_{\epsilon}-\frac{1}{4} F_{r v} F^{i v}}_{\begin{array}{c}
\text { Quadratic terms: } \\
\text { external lines }
\end{array}}-\underbrace{e \bar{\psi}_{\epsilon} A_{\mu} \gamma^{\mu} \psi_{f}}_{\begin{array}{c}
\text { intenction tens: } \\
\text { vertices }
\end{array}}
$$

Recipe for constructing amplitudes in QFT using a perturbative expansion in e (fulljustification for this in QFT class)
vertex: $i \times$ coefficient $=-i e \gamma^{\mu}$
External vectorsi: $\epsilon_{\mu}(p)$ for ingoing $\epsilon_{m}^{*}(\rho)$ for outgoing

- (same factor for all fermions wrcharse -1)
\qquad

note reversal of arrows!

Internal lines. "reciprocal of quadratic term" plus some factors of; For fermions, Dirac equation is $(p-m) \psi=0$, so fermion propagator is " $\frac{i}{p-n}$ ". This (strict speaking) doesn't make sense because we are dividing by a matrix, but we can manipulate it a bit using be defining relationship of the γ matrices, $\left\{\gamma^{\mu}, \gamma^{v}\right\} \equiv \gamma^{\nu} \gamma^{v}+\gamma^{\nu} \gamma^{\mu}=2 \eta^{n v}$
Note $(p+m)(p-m)=p p-n^{2}=\frac{1}{2}\left(p_{\mu} p_{\nu} \gamma^{m} r^{v}+p_{v} p_{\mu} \gamma^{\nu} \gamma^{r}\right)-n^{2}=p^{2}-m^{2}$ $\Rightarrow \frac{i}{\phi-m}=\frac{i(\phi+n)}{p^{2}-m^{2}} \quad(4 \times 4$ matrix in spinor space) Similarly for vectors, $D A_{\mu}=0 \Rightarrow$ propagator is $\frac{\text { "i } "}{D}=\frac{-i \eta_{\mu v}}{p^{2}}$

Lefts construct the Fegaman diagram for the lowest-order contribution to $e^{+} e^{-} \longrightarrow \mu^{+} \mu^{-}$

Terminology: external states are "on-shel"" internal lines are "virtual particles"

$$
\left[\bar{v}_{s_{2}}\left(p_{2}\right)\left(-i e \gamma^{\mu}\right) u_{\varsigma_{1}}\left(p_{1}\right)\right]\left(\frac{-i \eta_{\mu v}}{\left(p_{1}+p_{2}\right)^{2}}\right)\left[\bar{u}_{s_{3}}\left(p_{3}\right)\left(-i e \gamma^{v}\right) v_{s_{4}}\left(p_{4}\right)\right]
$$

Several things to note:

- terms in brackets are Lorentz 4-vectors, but all spine indices have been contracted. Mnemonic: work backwash along Fermion arrows.
- Momentum conservation enforced at each vertex: $p_{1}+p_{2}$ flows into photon propagator, and $t h$ is is equal to $p_{3}+p_{4}$
- The final answer is a number, which we call in (i is correctional).

Recipe for computing cross sections.

- Write down all Feynman diagrams at a given order in conllinge
- Choose spins for external states, evaluate $|\mu|^{2}$
- Integrate over phase space to get σ, or integrate over part of phase space to get a differential cross section $\frac{d \sigma}{d x}$, which gives a distribution in the variablels) x.
In particular, we want to understand $\frac{d \sigma_{e^{+e} \rightarrow n+n}}{d \theta_{c m}}$, where $\theta_{c m}$ is the angle between the outgoing μ^{-}and the incoming e^{-}in the center of momentum frame where $\vec{p}_{1}+\vec{p}_{2}=0$.

Evaluating the matrix element

$$
i \mu=\left[\bar{v}_{s_{2}}\left(p_{2}\right)\left(-i e \gamma^{\mu}\right) u_{s_{1}}\left(p_{1}\right)\right]\left(\frac{-i \eta_{\mu v}}{\left(\rho_{1}+p_{2}\right)^{2}}\right)\left[\bar{u}_{s_{3}}\left(p_{3}\right)\left(-i e \gamma^{v}\right) v_{s_{4}}\left(p_{4}\right)\right]
$$

First, need to specify spins. We will assume the initial e^{-}add e^{+} beam, ore mpolarized, so we will average over initial spins.
Also assure detectors are blind to particle spins, so sum over foal spins, Later me will see what happen with polarized cross sections.

Summing, over spins actually simplifies the computation. Square first:

$$
|\mu|^{2}=\frac{e^{4}}{\left(p_{1}+\rho_{2}\right)^{4}}[\underbrace{\left[\bar{v}_{s_{2}}\left(p_{2}\right) r^{\mu} u_{s_{1}}\left(\rho_{1}\right)\right]}_{\text {focus on this term first }}\left[\bar{v} s_{2}\left(\rho_{2}\right) r^{\rho} u_{s_{1}}\left(\rho_{1}\right)\right]^{+} \eta_{\sim v} \eta_{\rho \sigma}\left[\bar{u}_{s_{3}}\left(\rho_{3}\right) v^{v} v_{s_{4}}\left(\rho_{q}\right)\right]\left[\bar{u}_{s_{3}\left(\rho_{1}\right)} v^{\sigma} v_{s_{4}\left(q_{4}\right)}\right]^{+}
$$

$\left[\bar{v} r^{\rho} u\right]^{+}=u^{+}\left(V^{\rho}\right)^{+}\left(r^{0}\right)^{+} v . \quad$ Recall $r^{0}=\left(\begin{array}{cc}0 & \mathbb{1} \\ \mathbb{1} & 0\end{array}\right)$, so $r^{0}=\left(r^{0}\right)^{r}$. So for $\rho=0$,
$\left[\bar{v} \gamma^{0} u\right]^{+}=u^{+} \gamma^{0} \gamma^{0} v=\bar{u} \gamma^{0} v$. For $\rho=1,2,3,\left(\gamma^{\rho}\right)^{+}=-\gamma^{\rho}$, and

$$
\begin{aligned}
& -\gamma^{\rho} \gamma^{0}=+\gamma^{0} \gamma^{\rho}+2 \eta^{o \rho}=+\gamma^{0} \gamma^{\rho} \text {, so } \\
& {\left[\bar{v} \gamma^{\rho} u\right]^{+}=u^{+}\left(-\gamma^{\rho}\right) \gamma^{0} v=u^{+} \gamma^{0} \gamma^{\rho} v=\bar{u} \gamma^{\rho} v}
\end{aligned}
$$

\Rightarrow conjugating just flips be "bar" (hence the notation): $\left[\bar{v} \gamma^{\rho} u\right]^{+}=\bar{u} \gamma^{\rho} v$.
So the Arsis two terms in bracelets are (restoring spinaor indices)",

$$
\bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha} Y_{\alpha \beta}^{\mu} u_{r_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{\varphi_{1}}\left(p_{1}\right)_{\gamma} Y_{r \sigma}^{\rho} v_{s_{2}}\left(p_{2}\right)_{\delta}
$$

Now average over s_{1} and s_{2}. Once we write the indices explicit ls, we can rearrange terms at will:

$$
\begin{aligned}
& \sum_{s_{1}} u_{r_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{r_{1}}\left(p_{1}\right)_{r}=\left(p_{1}+m_{c}\right)_{\beta r} \\
& \sum_{s_{2}} v_{s_{2}\left(p_{2}\right) \delta} \bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha}=\left(p_{2}-m_{l}\right)_{\delta \alpha} \\
& \{ \\
& \text { rementen, } p_{1} \text { and } p_{2} \text { refer to } \\
& \text { electron/position nomerta, so } \\
& \text { mass is } \mathrm{me} \\
& \begin{aligned}
\Rightarrow \frac{1}{4} \sum_{s_{1}, \varepsilon_{2}} \bar{v}_{s_{2}}\left(p_{2}\right)_{\alpha} \underbrace{\mu}_{\alpha \beta} u_{c_{1}}\left(p_{1}\right)_{\beta} \bar{u}_{c_{1}}\left(p_{1}\right)_{\gamma} \gamma_{r \sigma}^{\rho} V_{s_{2}}\left(p_{2}\right)_{\delta} & =\frac{1}{4}\left(p_{2}-\mu_{c}\right)_{\sigma_{\alpha}} \gamma_{\alpha \beta}^{\mu}\left(p_{1}+m_{c}\right)_{\beta r} r_{r \sigma}^{\rho} \\
& =\frac{1}{4} \operatorname{Tr[(p_{2}-m_{c})\gamma ^{\mu }(p_{1}+m_{c})\gamma ^{\rho }]}
\end{aligned}
\end{aligned}
$$

This might not look like much of an improvement, but there are a number of very useful identities involving traces of r matrices:

$$
\begin{aligned}
& \operatorname{Tr}\left(\text { odd } \pm \text { of } \gamma_{s}\right)=0 \\
& \operatorname{Tr}\left(\gamma^{\mu} r^{v}\right)=4 \eta^{m v} \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{v} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(\eta^{\mu v} \eta^{\mu \sigma}-\eta^{m p} \eta^{v \sigma}+\eta^{m \sigma} \eta^{v \rho}\right)
\end{aligned}
$$

Using, te florist identity, only two terms survive:

$$
\begin{aligned}
& \operatorname{Tr}\left(-m_{e}^{2} \gamma^{\mu} r^{p}\right)=-4 m_{c}^{2} \eta^{m p} \\
& \operatorname{Tr}\left(p_{2} r^{m} p_{1} \gamma^{p}\right)=4\left(p_{2}^{\mu} p_{1}^{p}-\left(p_{1} p_{2}\right) \eta^{m p}+p_{2}^{p} p_{1}^{n}\right)
\end{aligned}
$$

Notice that all be Y matrices have disappeared! We now have a pure lorentz tensor. Analogous manipulation on the muon terms with ρ_{3} and ρ_{4} give.

$$
\begin{aligned}
& \begin{array}{r}
=\frac{4 e^{4}}{\left(p_{1}+p_{2}\right)^{4}}\binom{\left(p_{2} \cdot p_{1}\right)\left(p_{1} \cdot p_{4}\right)+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{1} \cdot p_{4}-m_{n}^{2}\right)}{+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)+\left(p_{2} \cdot p_{)}\right)\left(p_{1} \cdot p_{4}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}-m_{n}^{2}\right)}
\end{array} \\
& \left.-2\left(p_{3} \cdot p_{4}\right)\left(p_{1} \cdot p_{2}-m_{c}^{2}\right)+4\left(p_{1} \cdot p_{2}-m_{c}^{2}\right)\left(p_{3} \cdot p_{4}-m_{m}^{2}\right)\right)
\end{aligned}
$$

Lets imagine a collider like LEP at CERN where E $\approx 100 \mathrm{GeV} \gg \mathrm{me}, \mathrm{m}_{\mathrm{m}}$. All Me dot products ar $O\left(E^{2}\right)$, so we can drop the mas term, for simplicity:

$$
\langle | M\left\rangle^{2}=\frac{8 e^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left(\left(p_{2} \cdot p_{3}\right)\left(p_{1} \cdot p_{4}\right)+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)\right)\right.
$$

This is a Loratz-invariant number. Now, specify a reference frame:

$$
\begin{aligned}
& p_{1}=\frac{E}{2}(1,0,0,1) \quad\left\{\left(p_{1}+p_{2}\right)^{2}=E^{2}\right. \\
& p_{2}=\frac{E}{2}(1,0,0,-1) \\
& p_{3}=\frac{E}{2}(1, \sin \theta, 0, \cos \theta) \\
& p_{4}=\frac{E}{2}(1,-\sin \theta, 0,-\cos \theta)
\end{aligned}
$$

So $p_{1} \cdot p_{3}=\frac{E^{2}}{4}(1-\cos \theta), p_{1} \cdot p_{4}=\frac{E^{2}}{4}(1+\cos \theta), p_{2} \cdot p_{3}=\frac{E^{2}}{4}(1+\cos \theta), p_{2} \cdot p_{4}=\frac{E^{2}}{4}(1-\cos \theta)$

$$
\left.\left.\langle | m\right|^{2}\right\rangle=\frac{e^{4}}{2}\left((1+\cos \theta)^{2}+(1-\cos \theta)^{2}\right)=e^{4}\left(1+\cos ^{2} \theta\right)
$$

why so simple after all (hat work? angular momentum conservation

Final step: integrate over phase space to obtain $\frac{d \sigma}{d \cos \theta}$.
Last week we saw that 2-6ody phase space took a particularly simple form: \sim always unity since we took $E>M_{m}$.

$$
\begin{aligned}
& d \Pi_{2}=\frac{1}{16 \pi^{2}} d \Omega \frac{\left|p_{a}\right|}{E_{L_{m}}} \Theta\left(E_{C_{m}}-m_{3}-m_{4}\right) \\
& d \sigma=\frac{1}{\left(2 E_{1}\right)\left(2 E_{2}\right) / v_{1}-v_{2} \mid}\langle | M| \rangle^{2} d \pi_{2} \\
& E_{1}=E_{2}=E / 2 \quad \begin{array}{l}
\text { relativistic beans }
\end{array}
\end{aligned}
$$

$d \Omega \equiv d \phi d \cos \theta, \phi$ dependence is trivial so integrating gives 2π

$$
\begin{aligned}
& \Rightarrow d \sigma=\frac{1}{32 \pi E^{2}} e^{4}\left(1+\cos ^{2} \theta\right) d \cos \theta \\
& \frac{d \sigma}{d \cos \theta}=\frac{e^{4}}{32 \pi E^{2}}\left(1+\cos ^{2} \theta\right)=\frac{\pi \alpha^{2}}{2 E^{2}}\left(1+\cos ^{2} \theta\right) \quad \text { whee } \alpha=\frac{e^{2}}{4 \pi}
\end{aligned}
$$

Two sharp predictions, cross section depends on CM energy as $\frac{1}{E^{2}}$, and angular distribution of muons is $1+\cos ^{2} \theta$. Both borne out by experiment!

Can also integrate over θ to ret total cross section:

$$
\sigma=\int \frac{1 \sigma}{d \cos \theta} d \cos \theta=\frac{\pi \alpha^{2}}{2 E^{2}} \int_{-1}^{1}\left(1+x^{2}\right) d x=\frac{4 \pi \alpha^{2}}{3 E^{2}}
$$

For known E, can use this to measure α.

