Quantum electrodynamics

SM Lagrangian from last time:

$$
\begin{aligned}
& \mathcal{L}_{s m}=\mathcal{L}_{\text {kinetic }}+\alpha_{y_{\text {nama }}}+\mathcal{L}_{\text {Hiss }} \\
& =\left|D_{\mu} H\right|^{2}-\frac{1}{4} G_{\mu v}{ }^{n} G^{\sim v a}-\frac{1}{4} W_{m v}{ }^{a} W^{\sim v a}-\frac{1}{4} B_{\mu \nu} B^{\mu v} \\
& +\sum_{f=1}^{3}\left\{i \underline{L_{f}^{+} \bar{\sigma}^{m} D_{\mu} L_{F}+i Q_{f}^{+} \bar{\sigma}^{-} D_{\mu} Q_{R^{+}} ; \underline{e}_{R}^{K^{+}} \sigma^{m} D_{\mu} e_{R}^{F}}+i u_{R}^{*+} \sigma^{\mu} D_{\mu} u_{R}^{f}+i d_{R}^{F+} \sigma^{-} D_{\mu} d_{R}^{+}\right\} \\
& -Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}-Y_{i j}{ }^{n} Q_{i}^{+} \tilde{H} u_{R}^{j}+\text { hic. } \\
& +m^{2} H^{+} H-\lambda\left(H^{+} H\right)^{2}
\end{aligned}
$$

Focus on these terms today. After setting $H=\binom{0}{v}$ and diagonalizing $Y_{i j}^{e}$, bottom comport of ternion doublet $L_{f}=\binom{v^{f}}{e_{L}^{f}}$ is

$$
\sum_{f=1}^{3} i e_{L}^{f+} \bar{\sigma}^{-} D_{\mu} e_{L}^{f}+i e_{R}^{f+} \sigma^{m} D_{\mu} e_{R}^{f}-y_{f} v e_{L}^{A} e_{R}^{f}+h . c .
$$

we want to identify $y_{f} v \equiv M_{f}$, but for his to describe charged leptons (electrons, muons, tams), we have to be able to combine L ad R spinous into a 4 componat spine $\psi=\binom{e_{L}}{e_{R}}$ with ie correct electric chase. Recall $y=-1$ for e_{R}, but $y=-\frac{1}{2}$ for e_{L}, so this init quite right.
In fact, $Q=T_{3}+y$, where T_{3} is the 3-d perentor of suckle) $T_{3}=\frac{1}{2} \sigma_{3}=\left(\frac{1}{2}-1 / 2\right)$, so e_{2} is an eigenvector of T_{3} wleiserace $-\frac{1}{2}$. $Q_{L}=-\frac{1}{2}+\left(-\frac{1}{2}\right)=-1 \quad$ \} his works!

$$
Q_{R}=0+-1=-1
$$

Conclusion: electromagnetion is a (inear combination of SUC2) and U(1)y gurge bosons.
we will see later on that the remaining su(2) gars fields are ruck heavier than me, m_{μ}, so for be time being we can ignore
then.

$$
\mathcal{L}_{a E 0}=\left\{\sum_{f=1}^{3} \bar{\psi}_{F}\left(i \partial_{\mu}-c A_{\mu}\right) \gamma^{m} \psi_{F}-n_{f} \bar{\psi}_{f} \psi\right\}-\frac{1}{4} F_{\mu} F^{n v}
$$

where $\psi=\binom{e_{L}}{e_{R}}, \bar{\psi} \equiv\left(e_{R}^{+} e_{L}^{+}\right)=\psi^{+} \gamma^{0}$

Classical spine solutions
(Massive) Dirac equation: ; $\gamma^{\mu} \partial_{\mu} \psi-m \psi=0$
Look for solutions $\psi=e^{-i p \cdot x}\binom{x_{2}}{x_{N}}$ where x_{L}, x_{R} are constant 2-comp. spines

$$
\begin{aligned}
\Leftrightarrow & \gamma^{\mu} p_{\mu}\binom{x_{L}}{x_{R}}=n\binom{x_{L}}{x_{R}} \\
& \left(\begin{array}{cc}
0 & \rho \cdot \sigma \\
\rho \cdot \bar{\sigma} & 0
\end{array}\right)\binom{x_{L}}{x_{R}}=n\binom{x_{L}}{x_{R}}
\end{aligned}
$$

First look for solutions with $\hat{\rho}=0^{\prime}$, con construct the solute for general \vec{p} with a Lorentz boost. $p \cdot \sigma=\rho \cdot \bar{\sigma}=m$ II, so

$$
\left(\begin{array}{cc}
-\mathbb{1} & \mathbb{1} \\
\mathbb{1} & -\mathbb{1}
\end{array}\right)\binom{x_{L}}{x_{R}}=0 \Rightarrow x_{L}=x_{R}, \text { but otherwise unconstrained }
$$

Choose a buses: $x_{L}=\binom{1}{0}$ or $\binom{0}{1}$, so let 4 -component solution, be $u_{p}=\sqrt{m}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $u_{\downarrow}=s_{n}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right) . \begin{aligned} & \text { These represent spin-up ar spin down electrons } \\ & \text { (or muons or taus) }\end{aligned}$
Just like with complex scalar fields, there are also negative-frequency solutions $e^{+i p \cdot x}\binom{x_{2}}{x_{R}}$ that represent antiparticles: positions. Changing sign of p^{0} nears $x_{L}=-x_{R}$.

$$
v_{\uparrow}=\sqrt{n}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), v_{\downarrow}=\sqrt{n}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)
$$

Note: differat labeling carrion from Schwartz.
Physical spin-up positrons have $x_{L}=(i)$: this comer from QFT.

Con construct solution for gereal p with lorentz transformations,
For now, will just write down the solution ad check that it woks:

$$
u^{s}(p)=\left(\begin{array}{cc}
\sqrt{p \cdot \sigma} & \xi_{s} \\
\sqrt{p \cdot \bar{\sigma}} & \xi_{s}
\end{array}\right), \quad v^{s}(p)=\left(\begin{array}{cc}
\sqrt{p \cdot \sigma} & \eta_{s} \\
-\sqrt{p \cdot \bar{\sigma}} & \eta_{s}
\end{array}\right) \quad \begin{aligned}
& \text { were } \\
& (s=1,2)
\end{aligned} \xi_{1}=\eta_{1}=\binom{1}{0}, \quad \xi_{2}=\eta_{2}=\binom{0}{1}
$$

Check Dirac equation for n :

$$
\left(\begin{array}{cc}
0 & \rho \cdot \sigma \\
\rho \cdot \bar{\sigma} & 0
\end{array}\right)\binom{\sqrt{\rho \cdot \sigma} \xi_{s}}{\sqrt{\rho \cdot \sigma} \xi_{s}}=\binom{\sqrt{\rho \cdot \sigma} \sqrt{(\rho \cdot \sigma)(\rho \cdot \sigma)} \xi_{s}}{\sqrt{\rho \cdot \bar{\sigma}} \sqrt{\rho \cdot \sigma)(\rho \cdot \sigma)} \xi_{s}}=\binom{\sqrt{\rho \cdot \sigma} \sqrt{m^{2}} \xi_{s}}{\sqrt{\rho \cdot \bar{\sigma}} \sqrt{m^{2} \xi_{s}}}=m u \sqrt{ }
$$

To see how the spinors behave, lets let $\vec{p}=p_{2} \hat{z}$:
$p \cdot \sigma=\left(\begin{array}{cc}E-\rho_{2} & 0 \\ 0 & E+p_{2}\end{array}\right), \quad p \cdot \bar{\sigma}=\left(\begin{array}{cc}E+p_{2} & 0 \\ 0 & E-\rho_{2}\end{array}\right)$, and since these matrices are already diagonal, taking be square root is unambiguous

$$
\begin{aligned}
& u_{1}=\left(\begin{array}{c}
\sqrt{E-\rho_{2}} \\
0 \\
\sqrt{E+p_{2}} \\
0
\end{array}\right), u_{2}^{\beta}=\left(\begin{array}{c}
0 \\
\sqrt{E+p_{2}} \\
0 \\
\sqrt{E-\rho_{2}}
\end{array}\right), v_{1}=\left(\begin{array}{c}
\sqrt{E-\rho_{2}} \\
0 \\
-\sqrt{E+\rho_{2}} \\
0
\end{array}\right), v_{2}^{*}=\left(\begin{array}{c}
0 \\
\sqrt{E+\rho_{2}} \\
0 \\
-\sqrt{E-\rho_{2}}
\end{array}\right)
\end{aligned}
$$

*NOTE: very bad typo in Schwartz nd $^{\text {nd }}$ edition eq $(11,26)$!
If $E \gg m, E \approx\left|p_{2}\right|$. For $p_{2}>0$ (notion along +2 -axis),
$u_{1}(p) \approx \sqrt{2 E}\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) . \quad x_{L}=0$, so this is a purely right-handed spine-
But $\xi=\binom{1}{0}$ means spin-up alan g 2 -axis. this election also has helicity $+\frac{1}{2}$, or has right-handed polarization in the traditional sense.
\Rightarrow for massless particles, chirality and helicits are the same (right-harled spiro $=$ right-handed particle)

What about antiparticles? A position moving in the $+z$ direction with spin-up along z-axis is still a right-handed antiparticle, but its spins is $v_{2}(p)=\left(\begin{array}{c}0 \\ \sqrt{E+p_{2}} \\ 0 \\ \sqrt{E-p_{2}}\end{array}\right) \approx \sqrt{2 E}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$, which is pure x_{L}. Helicits and chiralits are opposite for antiparticles.
Think of u's and v's as column rectors and $\bar{u} \equiv u^{+} \gamma^{0}, \bar{v} \equiv v^{+} \gamma^{0}$ as cow rectors. Useful identities for what follows:

$$
\left.\begin{array}{rl}
\bar{u}_{s}(p) u_{s^{\prime}}(p)=u_{s}^{+}(p) \gamma^{0} u_{s}(p) & =\left(\begin{array}{ll}
\xi_{s}^{+} \sqrt{p \cdot \sigma} & \left.\varepsilon_{s}^{r} \sqrt{\rho \cdot \sigma}\right)
\end{array} \begin{array}{l}
\sqrt{\rho \cdot \bar{\sigma}} \xi_{s} \\
\sqrt{\rho \cdot \sigma} \xi_{s}
\end{array}\right) \\
& =\left(\xi_{s}^{+} \xi_{s}^{+}\right.
\end{array}\right)\left(\begin{array}{r}
\sqrt{(p \cdot \sigma)(p \cdot \sigma)} \\
\\
\sqrt{(\rho \cdot \bar{\sigma})(\rho \cdot \sigma)}
\end{array}\right)\binom{\xi_{s}}{\xi_{s}}=2 m \delta_{s s^{\prime}} .
$$

Similar $\geqslant u_{s}^{+}(p) u_{s^{\prime}}(p)=\left(\varepsilon_{s}^{+} \xi_{s}^{+}\right)\left(\begin{array}{rr}p \cdot \sigma \\ & \rho \cdot \bar{\sigma}\end{array}\right)\binom{\varepsilon_{s}}{,\xi_{1}^{\prime}}=2 E \delta_{s_{s},} \begin{array}{r}\text { (note. not } \\ \text { chLorate }\end{array}$ Lorutz-invarat!)

Analogous for r (check yowself).

$$
\bar{v}_{s}(p) v_{s}(p)=-2 m \Gamma_{s s^{\prime}}, \quad v_{s}^{+}(p) v_{s}(p)=2 E \delta_{s s^{\prime}}
$$

wive been a bit fast and loose with matrix notation. The aback were imper products: contract tho 4-componet spinet to get a number. La also take outer products to pet a 4×4 maters.

$$
\begin{aligned}
& \sum_{s=1}^{2} u_{s}(p) \bar{u}_{s}(p)=p^{m} \gamma_{m}+m \mathbb{H}_{4 \times 4} \equiv \not \phi^{\prime}+m \quad \text { (Feynman slash notation) } \\
& \sum_{s=1}^{2} r_{s}(\rho) \bar{v}_{s}(p)=p-m \quad \nexists H W \quad \text { note tee oder of } u \text { and } \bar{u} \text {, }
\end{aligned}
$$

Classical vector solutions
Gauge-fixed Maxwell equetires: $\square A_{\mu}=0, \partial^{\mu} A_{\mu}=0$
A guin, look for Solutions $A_{\mu}=\epsilon_{\mu}(p) e^{-i p x}$. We did this in week 4 : in a flume where $P^{\mu}=(E, 0,0, E)$, we have

$$
\epsilon_{m}^{(1)}=(0,1,0,0), \epsilon_{m}^{(2)}=(0,0,1,0), \epsilon_{\mu}^{f}=(1,0,0,1)
$$

Recall $\epsilon_{n}{ }^{+}$is raphysical because it has zero norm. However, we seed to include it because $\epsilon_{\mu}^{(1,2)}$ mix win it under a Lorentz trusformation. Explicitly, let $\Lambda_{v}^{\mu}=\left(\begin{array}{cccc}3 / 2 & 1 & 0 & -1 / 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 / 2 & 1 & 0 & 1 / 2\end{array}\right)$. Can check $\eta \Lambda^{\top} \eta n=\mathbb{1}$, also $\Lambda^{m} v p^{\nu}=p^{\mu}$, so Λ preserve, p^{μ}. However, $\Lambda_{v}^{\mu} \epsilon_{\mu}^{(1)}=(1,1,0,1)=\epsilon_{v}^{(1)}+\epsilon_{v}^{f}$, so Lorentz trmstormations can generate the unphasical polarization.
But it turns out that in QED, all amplitudes $M^{m}(p)$ involving an external photon with momentum P^{M} sadists $P_{M} M^{\mu}=0$. This is m ward ilefity, and because $\epsilon_{\mu}{ }^{*} \propto \rho^{\mu}$, this unphysical polarization doesn't contribute to any observable quantity. (More on (his later!)
Analogous to spinors, we con compute inner and outer products:

$$
\begin{aligned}
& \epsilon_{\mu}^{(i)} \epsilon^{\mu(j)}=-\delta^{i j}, i=1,2 \\
& \sum_{i=1}^{2} \epsilon^{\mu(i) s} \epsilon^{v(i)}=\left(\begin{array}{lll}
0 & & \\
& 1 & \\
& & 0 \\
& & \\
& &
\end{array}\right)+\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1 \\
& & 0
\end{array}\right)=-\eta^{\mu v}+\left(\begin{array}{cc}
1 & \\
& 0 \\
& 0 \\
& \\
& \\
&
\end{array}\right) \\
&=-\eta^{\mu v}+\frac{p^{\mu} \bar{p}^{v}+p^{\prime} \bar{p}^{\mu}}{p^{\prime} \cdot \bar{p}}
\end{aligned}
$$

where $\bar{\rho}=(E, 0,0,-E)$. But by the agyumats above s the ρ^{μ} will always contract to zero, so we con say $\sum_{i=1}^{2} \epsilon^{m(i) p} \epsilon^{v(i)} \longrightarrow-\eta^{m v} \quad$ (again, sum over spins gives a matrix)

