Introduction to effective field theories
So for in this course we have considered almost exclusively dimension-4 operators. There is a good reason for this: in QFT, field theories with scalar), fermions, and gauge bosons with interactions up to dimension 4 are reoormalizable, reaming that an appacats infinite quantities from loop diagrams can be consistently removed. However, this is not the case for higher-dimension operator, which are called non-renormelizable. In geneal, field theories with there operators require an infinite series of eve-higle diversion opentors to cancel would-be infinities. The coetflevers of terse operators are celated to measurable quantities, so these theories are still predictive.

We saw on example in the 4-Ferni pos of how a renormalizuble Lagrangian at high energies gives a non-renornalizable one at con evergies. Lets make that precise with a toy example:

$$
\mathcal{L}=i \bar{\psi} \partial_{m} \psi-n \bar{\psi} \psi+\frac{1}{2} \partial_{m} \phi \partial^{n} \phi-\frac{1}{2} M^{2} \phi^{2}-y \phi \bar{\psi} \psi
$$

This describes a fermion of mass m interacting with a scale of mass M trough a Yukawa coupling. Consider $4 \bar{x}$ scattering.

$$
\left.i \mu=y^{2}\left(\frac{i}{s-\mu^{2}}\right) \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) v p_{+}\right)
$$

Suppose scatting takes place at center-otrmass energies, $\sqrt{s} \ll M$, Then we can expand the amplitude using

$$
\begin{aligned}
& \frac{1}{s-m^{2}}=\frac{-1}{m^{2}} \frac{1}{1-\frac{s}{m^{2}}}=-\frac{1}{m^{2}}\left(1+\frac{s}{m^{2}}+\frac{s^{2}}{m^{4}}+\cdots\right) \\
& \text { So i } M=-s^{2} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) v\left(p_{4}\right)\left[\frac{1}{m^{2}}+\frac{s}{m^{4}}+\frac{s^{2}}{m^{6}}+\ldots\right]
\end{aligned}
$$

The frost term looks like a q-fermion interaction with
coefficient $\frac{y^{2}}{m^{2}}$. Lest $) \frac{y^{2}}{m^{2}} \bar{\psi} \psi \psi \psi$. The inteportation is that at very low energies, much less then M, the particle count be produced un-sbell. The amplitude for its propagation becomes ven small the former off -shell it is, so the propusutor in the original matrix element shrinks to a point:

However, this is just the leadiry-ader contribution. Theoter terms in the expansion reprint Larongion terms like
$\sum \supset \frac{y^{2}}{m^{4}} \partial_{\Omega} \bar{\psi} \partial^{n} \psi \bar{\psi} \psi+\frac{y^{n}}{m^{6}} \partial_{\sim} \bar{\psi} \partial_{v} \psi \partial^{n} \bar{\psi} \partial^{*} \psi \ldots$
with increasing numbers of derivatives, which become factors of momenta in the Feynman rule. We say that we have integrated out the ψ particle and encapsulated its erfectsin an infinite series of operators containing only ψ.
Another perspective: the equation of motion for θ is $\left(\square+M^{2}\right) \varphi=-y \Psi \psi$. We can "solve" for ϕ as a formal power series: $\phi=\frac{-1}{\square+M^{2}}(y \bar{\psi})$. By replacing ϕ with its solution in the equations of motion for ψ and expanding for small momenta, we obtain the same series of operators we sot before:
$\mathcal{L} \supset-y \bar{\psi} \psi \psi \rightarrow-y^{2} \bar{\psi} \psi\left(\frac{1}{m^{2}}-\frac{D}{m^{+}}+\cdots\right) \bar{\psi} \psi$
This manipulation (replacing a field with its classical solution) is also referred to as integrating out a field. (In path integral formalism in QFT, we compute the path integral exactly over the heavy field). In frit, nothing here needs quarturn necharics (set), this works perfectly fine for classical nonlinear fields like GR.
we can also run this procedure in revere: for a given higher-dimasional operator, what additional hears particles could we have to add to the trans to give our desired opentor once they are integrated out? This is known as a UV completion, and is in gerent not urine, though it can point to where to look for sen physics responsible for that opentor. Non-renormalizable theories predict their own demise!
ex. Chiral Lagramion $\xrightarrow{\text { UV complete }} Q \subset D$

$$
\mathcal{L}=F_{\pi}^{2} \operatorname{Tr}\left(D_{\mu} \varepsilon D^{\mu} \Sigma^{+}\right) \quad \bigwedge_{Q C D} \quad L=-\frac{1}{4} G_{i v}^{a} C^{n v a}+\bar{\psi}_{D_{\mu}} \psi
$$

violates unitaits
at $S \sim \sqrt{9 \pi} F_{\pi} \approx 400 \mathrm{MeV}$
$\approx 200 \mathrm{meV}$ Becomes nan-peturbative at $\Lambda_{C C D} \approx 200$ nev

We can systematically account for new physics at high energy scales with the Standard Model Effective Field Theory (SMEFT); all $S U(3) \times S U(2) \times U(1)$-invariant operators of any dimension built out of $S M$ fields

$$
\begin{aligned}
& L_{\text {SMEFT }}= \sum_{d=5}^{\infty} \frac{1}{\lambda^{d-4}} \sum_{i}^{N_{i}^{(\lambda)}} c_{i}^{(d)} \theta_{i}^{(d)} \prod_{\text {operators of mos limes sion } d} \\
& \text { mass scale } \\
& \text { where n uv completion coefficients } \\
& \text { is required }
\end{aligned}
$$

Any measurement of nonzero C_{i} is by construction proof of physics beyond the SM! However, combinatorics and avoiding double-counting is very tricky.
$d=5$: $N^{(1)}=2$ (Weinberg operator and its conjugate)
$N^{(6)}=84, N^{(7)}=30, N^{(8)}=993, \ldots$ (sec arxiv: 1512.03433 if yource (wions)

Some examples:

- Weinberg opentor $\theta^{(s)}=\frac{1}{\Lambda} \epsilon^{\alpha \beta}\left(\epsilon^{a b} L_{a_{\alpha}} H_{b}\right)^{2}\left(\epsilon^{c l} L_{c \beta} H_{d}\right)+h . c$.
can be uv-completed with a hear right-harded reuters v_{k} :

$$
L=y_{v} L^{+} \tilde{H} v_{R}-\underbrace{\frac{M}{2} \epsilon^{\alpha \beta} v_{\alpha_{\alpha}} v_{k \beta}}_{\substack{\text { Majorana mass } \\ \text { for } v_{k}}}
$$

V_{k} poparato is $\frac{p+M}{p^{2}-M^{2}}=\frac{-1}{M}+\theta\left(\frac{\rho}{M}\right)$
\Rightarrow identify $\frac{1}{n} \equiv \frac{1}{m}, C^{(s)}=\left(y_{v}\right)^{2}$
If neutrinos pet mass from the weintey opentor, the value of the mass suggests a res for a new heavy righf-houled reut-rns: the lighter the SM neutrinos, the heavier U_{p} is ("seesow recharism"),

- Proton decay. In the SM, protons are absolutely stable because they are the lightest basion, and baryon number is conserved. But basin number is an accidental symmetry, and is generically violated in the SMEFT.

Consider $\theta^{(6)}=\frac{1}{\Lambda_{6}^{2}} \epsilon^{i j k} Q_{i} Q_{j} Q_{k} L$, where $\epsilon^{i j k}$ is the color antisymmetric tensor and all su(2) and fermion indices are contracted with the appropriate $\epsilon^{\alpha \beta}$. This leads to:

Experiments such as Super-Kamiokande have been searching
for this decay for decades: all null results so far!
$\tau_{p}>1.67 \times 10^{34} y r$ from $\pi^{0} e^{t}$ channel.

$$
\Rightarrow \Gamma_{p \rightarrow \pi^{\circ} \mathrm{e}^{+}}\left\langle 1.2 \times 10^{-5\rangle} \mathrm{eV}\right.
$$

Let's use this to bound Λ_{6} :

$$
\left.\left.\langle | M\right|^{2}\right\rangle \approx \frac{1}{\Lambda_{6}^{4}} \times[E]_{\uparrow \text { to }}^{6}
$$

To calculate this exactly requires non-perturbutive QCD: the largest scale in the problem is Mp, So let's just set $E=m_{p}$.

$$
\begin{aligned}
\Gamma & \approx \frac{1}{2 m p} \frac{1}{8 \pi} \frac{m_{p}^{6}}{\Lambda_{6}^{4}} \approx \frac{m_{p}^{5}}{16 \pi \Lambda_{6}^{4}} \\
& \Rightarrow \Lambda_{6}^{2}>1.0 \times 10^{16} \mathrm{GeV}!!
\end{aligned}
$$

What physics could possibly arise at that scale?
Grand Unified Theories (GUTs) try to combine Such), suczl, and $U(1)$ into a single gauge group, where the $S M$ arises from spontaneous symmetry breaking at the GUT scale of $\sim 10^{16} \mathrm{GeV}$.

$$
\text { ex. } S u(5) \longrightarrow s u(3) \times s u(2) \times u(1)
$$

The analogues of the $W / 2$ are 12 new gauge bosons X, which can mix quarks and leptons.

, 50

$$
\begin{aligned}
& \frac{1}{\Lambda_{6}^{2}}=\frac{1}{m_{x}^{2}}, \mathrm{al} \\
& n_{x}>10^{16} \mathrm{GeV} .
\end{aligned}
$$

\Rightarrow observation of proton decay would tell us about enormously large energy) scales!

- Electroweak precision

At dimension 6 we can also write down terms involving the SU(2) generators. Recall $\operatorname{Tr}\left(W_{n v} W^{n v}\right)$ is game-invt, because W_{n} is in the adjoint rep., so $\operatorname{Tr}\left(X W^{n v}\right)$ is also gauge-invt.
Consider $X=H^{+} \tau^{b} H$. Under $\operatorname{su}(2), H \rightarrow i \alpha^{a} \tau^{a} H, H^{+} \rightarrow-i \alpha^{a} H^{+} \tau^{a}$

$$
\delta x=-i \alpha^{a} H^{+} \tau^{a} \tau^{b} H+i \alpha^{a} H^{+} \tau^{b} \tau^{a} H=i \alpha^{a} H^{+}\left[\tau^{b}, \tau^{a}\right] H,
$$

So this transforms in the adjoint
$\Rightarrow \mathrm{H}^{+} \tau^{a} H W_{n v}^{a}$ is gaure-inut. To contract Lorentz indices, use $B_{\mu v}$, which is game-inut. Goy itself:

$$
\theta_{E w}^{(c)}=\frac{1}{\Lambda_{E w}^{2}} H^{+} \tau^{a} H W_{m v}^{a} B_{m v}
$$

After EwSB, $H \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ v \\ v\end{array}\right), H^{+} \tau^{n} H \rightarrow-\frac{1}{4} v^{2} \delta^{a 3}$
$\Rightarrow \theta_{E W}^{(6)} \rightarrow \frac{-v^{2}}{4 \Lambda_{E w}^{2}} W_{w v}^{3} B^{m v}$, correction to gauge boson propagators!
In particular, this operator affects the "S-parameter", a combination of z and r propagators.
Consistent with zee $\Rightarrow \Lambda_{E w} \gtrsim$ TeN.

