Spin -0

Let's make these considerations concrete by considering a specific Lagrangian for a collection of complex scalar fields,
$\Phi=\binom{\phi}{\varphi} \equiv \frac{1}{\sqrt{2}}\binom{\phi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}} \quad$ where $\phi_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}$ are real

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

Claim: this Lagrangian describes 4 massive, relativistic scalar freeds invariant under one following symmetries:

$$
\begin{aligned}
& \text { - } \Phi(x) \rightarrow \Phi\left(\Lambda^{-1}(x-a)\right) \quad(\text { Poincoric }) \\
& \text { - } \Phi(x) \rightarrow e^{i \alpha \alpha} \Phi(x) \quad(u(1)) \\
& \text { - } \Phi(x) \rightarrow e^{i \alpha^{\alpha} \sigma^{\alpha} / 2} \Phi(x) \quad(\text { Sun }(2))
\end{aligned}
$$

First let's expand out \mathscr{L} just to see there is nothing mysterious in the notation:

$$
\begin{aligned}
& \Phi^{+} \equiv\left(\Phi^{*}\right)^{\top}=\frac{1}{\sqrt{2}}\left(\varphi_{1}-i \varphi_{2} . \varphi_{1}-i \varphi_{2}\right) \\
& \alpha=\frac{1}{2}\left(\begin{array}{ll}
\partial_{m} \phi_{1}-i \partial_{m} \phi_{2} & \partial_{m} \varphi_{1}-i \partial_{n} \varphi_{2}
\end{array}\right)\binom{\partial^{\mu} \varphi_{1}+i \partial^{\wedge} \phi_{2}}{\partial^{\wedge} \varphi_{1}+i \partial^{\mu} \varphi_{2}}-\frac{n^{2}}{2}\left(\begin{array}{ll}
\varphi_{1}-i \varphi_{2} & \varphi_{1}-i \varphi_{2}
\end{array}\right)\binom{\phi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}}+\cdots \\
& \left.\begin{array}{rl}
= & \frac{1}{2}\left(\partial_{m} \phi_{1}\right)\left(\partial^{2} \phi_{1}\right)+\frac{1}{2}\left(\partial_{1} \phi_{2}\right)\left(\partial^{2} \phi^{2}\right)+[\phi \rightarrow \varphi] \\
& -\frac{n^{2}}{2} \phi_{1}^{2}-\frac{n^{2}}{2} \phi_{2}^{2}+[\phi \rightarrow \varphi]
\end{array}\right] \\
& \text { these terms ore } \\
& \text { quadratic in the Fields, } \\
& \text { so will give free-patick } \\
& \text { equations of motion }
\end{aligned}
$$

+ (terms proportional to λ)
For now, let's set $\lambda=0$ and only look at the quadratic terns.

To find equation of notion, use Euler-Lagranse equation:
$\partial_{\mu} \frac{\partial \alpha}{\partial\left(\partial_{\mu} \psi_{1}\right)}-\frac{\partial \alpha}{\partial \psi_{1}}=0 \quad$ (and similar for $\left.\phi_{L}, \varphi_{1}, \varphi_{2}\right)$
(4-dimensional gerenalization of $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0$ from classical mechanics)
For quadratic terms only,

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial\left(\partial \partial_{\mu}\right)}=\frac{\partial}{\partial\left(\partial_{m} \phi_{1}\right)}\left[\frac{1}{2} \eta^{\alpha \rho} \partial_{\alpha} \phi_{1} \partial_{\rho} \psi_{1}\right]=\frac{1}{2} \eta^{\alpha \rho}\left(\delta_{\alpha}^{\mu} \partial_{\beta} \phi_{1}+\delta_{\beta}^{\mu} \partial_{\alpha} \phi_{1}\right) \\
&=\partial^{\mu} \phi_{1} \\
& \frac{\partial \alpha}{\partial \phi_{1}}=-m^{2} \phi_{1} \\
& \Rightarrow \partial_{\mu}\left(\partial^{\mu} \phi_{1}\right)-\left(-m^{2} \phi_{1}\right)=0 \\
&\left(\partial_{\mu} \partial^{\mu}+n^{2}\right) \phi_{1}=0 \text { Klein-Gordon equation }
\end{aligned}
$$

Get idatical equations for $\phi_{2}, \varphi_{1}, \varphi_{2}$. not a surprise, since they appear symorticall, in \mathcal{L} (more on this shortly)
Can succinctly write all 4 equations by treating Φ, Φ^{+}as independat
fields:

$$
\frac{\partial \alpha}{\partial(\partial \mu \Phi)}=\partial_{m} \Phi^{+}, \quad \frac{\partial L}{\partial \Phi}=-m^{2} \mathbb{E}^{+}
$$

$\Rightarrow\left(\partial_{n} \partial^{n}+m^{2}\right) \Phi^{+}=0$, same for Φ from Euke-Lagrange eq, fir Φ^{+}
Try a solution $\Phi(x)=e^{i k m^{n}}\binom{a}{b}$;

$$
\left(\left(i k_{m}\right)\left(i k^{\mu}\right)+m^{2}\right)\binom{a}{b} \stackrel{?}{=}\binom{0}{0}
$$

This solved the equation tor any a, 6 as long as $k_{m} k^{n}=m^{2}$, the correct eneny-momation relation for a relativistic massive particle.

Now let's consider the symmetries of α.

- Poincare. If we transform coordinates $x^{\mu} \rightarrow \Lambda_{v}^{\mu} x^{v}+a^{\mu}$, I should take the same value in both coordinate systems.
So we should shift re argument of Φ;

$$
\Phi \longrightarrow \Phi\left(\Lambda^{-1}(x-a)\right)
$$

(II itself doesn't get a Lorentz transformation matrix because it has spin 0) This is just the generalization of the familiar fact that to translate a function by \vec{a}, you shift $f \rightarrow f(\vec{x}-\vec{a})$. We are implicitly considering active transformations, where coordinates stan fixed and Fields transform, which is just a convention.

$$
\begin{aligned}
\mathcal{L}\left[\Phi(x), \partial_{\mu} \Phi(x)\right] \rightarrow & \eta^{\mu v} \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{v} \Phi\left(\Lambda^{-1}(x-a)\right)<\begin{array}{c}
\text { derivative hits } \\
\text { shifted assumeat }
\end{array} \\
& -m^{2} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right) \\
& -\frac{\lambda}{4}\left(\Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right)\right)^{2}\left\{\begin{array}{l}
\text { nothing happens other } \\
\text { than shifted armet }
\end{array}\right.
\end{aligned}
$$

Look at derivative term;

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right)=\left(\Lambda^{-1}\right)_{\mu}^{\rho} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \quad(\text { chan } r u(c) \\
\Rightarrow \eta^{N v} \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\nu} \Phi\left(\Lambda^{-1}(x-a)\right) & =\underbrace{\eta^{\mu \nu}\left(\Lambda^{-1}\right)_{\mu}^{\rho}\left(\Lambda^{-1}\right)_{v}^{\sigma} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \Phi\left(\Lambda^{-1}(x-a)\right)} \begin{aligned}
\eta^{\rho \sigma} \text { br def. of } \\
\text { Lorentz soup }
\end{aligned} \\
& =\eta^{\rho \sigma \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \Phi\left(\Lambda^{-1}(x-a)\right)} \\
\Rightarrow & \mathcal{L}\left[\Phi(x), \partial_{\mu} \Phi(x)\right] \rightarrow \mathcal{L}\left[\Phi\left(\Lambda^{-1}(x-a)\right), \partial_{\mu} \Phi\left(\Lambda^{-1}(x-a)\right)\right]
\end{aligned}
$$

Lagmsim stays exactly the save apart from a shift in coordinates.
So, if we derive equations of native from $\delta\left(\int d^{4} \times L(\Phi(x))\right)=0$, they will take the same for after a lorentz transformation.

Einstein notation is a poretal way to encode Lorentz invariance: if a Lagragion has all indices contracted, its invariant mule Lorentz transtornctions.
eng. $\partial_{\mu} \Phi \partial_{V} \Phi$ is not Lorentz-invariant, Gut $\partial_{\mu} \Phi \partial^{\mu} \Phi$ is.

- U(1) symmetry: I $\rightarrow e^{i a \alpha} \Phi$. We also require $\Phi^{+} \rightarrow e^{-i a \alpha} \Phi^{+}$ So that $\Phi^{+}=\left(\Phi^{*}\right)^{\top}$ before and artel trasto-nation
\Rightarrow any terms that have on equal number of I ad 末+ ore invariant, as long as α is a constant.

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+} \partial_{\nu} \Phi \longrightarrow\left(e^{-i \varphi<} \partial_{\mu} \Phi^{+}\right)\left(e^{\left.i \theta / \partial_{\nu} \Phi\right)=\partial_{\mu} \Phi^{+} \partial_{\nu} \Phi}\right. \\
& \left(\Phi^{+} \Phi\right)^{2}=\left(e^{-i g / \Phi^{+}} e^{i \varphi / \alpha} \Phi\right)^{2}=(\Phi+\Phi)^{2}, c t,
\end{aligned}
$$

Just like with Lorentz/Poincoré, we can consider in finitesimal tronstomatias.'

$$
e^{i \alpha \alpha}=1+i \alpha \alpha+\cdots \text {, so } \underline{\Phi} \rightarrow(1+i \alpha \alpha) \underline{\text { or }} \delta \underline{\Phi}=i \alpha \alpha \underline{I}
$$

This is a convenient calculational trick, so letter apple it

$$
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \underline{I}+\Phi^{+}(\delta \mathbb{I})=\left(-i \alpha \propto \mathbb{I}^{+}\right) \underline{\Phi}+\underline{I}^{+}(+i \alpha \times \underline{I})=0
$$

ne "variation operate" δ
distributes over products
If $\delta(\ldots)=0$, that term is invariant under the symmetry.

- Su(2) symmetry: I $\rightarrow e^{i \alpha^{a} \sigma^{a} / 2}$ I. Recall he Pauli matrices:

$$
\sigma^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For real parameter $\alpha^{a}(a=1,2,3), \quad \frac{i \alpha^{a} \sigma^{2}}{2}=\frac{i}{2}\left(\begin{array}{cc}\alpha^{3} & \alpha^{\prime}-i \alpha^{2} \\ \alpha^{\prime}+i \alpha^{2} & -\alpha^{3}\end{array}\right) \equiv i X \quad \in \operatorname{eu}(2)$

$$
M \equiv e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\cdots \quad \in \operatorname{SU}(2)
$$

If X is Hermitian, M is unitary (HW) Why $S u(2)$ instead of $u(2)$?

Suppose we diagonalize M so tet $M=\prod_{i} \lambda_{i}$ (product of eigevales)

$$
\log (\operatorname{det} M)=\log \left(\prod_{i} \lambda_{i}\right)=\sum_{i} \log \lambda_{i}=\operatorname{Tr}(\log n)
$$

But Tr and dit are both basis-indepeleat so the hold for any M, in particular $M=e^{i x}$
If $\operatorname{Tr}(x)=0$, hen $\operatorname{Tr}(\log n)=\operatorname{Tr}(i x)=0$, so $\log (\operatorname{det} n)=0$, $\operatorname{det} M=1$
\Rightarrow traceless, Hermitian x exponentiate to unitary matrices M with determinant 1 .

Here, Pauli matrices on 2×2, so bey exporentirate to the group su(2) (indeed, they are the hie algebra of Such), ie. The set of infinitesimal transformations)

Back to Lagrangian: again, any terms with an equal number of Φ and Φ^{+}are inverimet.
Proof: $\delta \Phi=\frac{i \alpha^{a} \sigma^{a}}{2} \Phi, \delta \Phi^{+}=\left(\frac{i \alpha^{a} \sigma^{a}}{2} \mathbb{E}\right)^{+}=\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right)$
($\sigma^{\text {a are Hermitian) }}$

$$
\begin{aligned}
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \Phi+\Phi^{+}(\delta \Psi) & =\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right) \Phi+\Phi^{+}\left(\frac{i \alpha^{a} \sigma^{a}}{2}\right) \Phi \\
& =\Phi^{+}\left(\frac{-i \alpha^{2} \sigma^{a}+i \alpha a / \sigma^{a}}{2}\right) \Phi \\
& =0
\end{aligned}
$$

What does $\delta \mathbb{I}$ do to be fuels in 区? Write out some examples:

$$
\begin{aligned}
& \alpha=(1,0,0) \quad \delta \mathbb{E}=\frac{i \sigma^{\prime}}{2} \mathbb{E}=\left(\begin{array}{cc}
0 & \frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)\binom{\phi_{1}+i \phi_{2}}{\varphi_{1}+i \varphi_{2}}=\binom{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}}{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}} \\
& \text { i, e, } \delta \phi_{1}=-\frac{\varphi_{2}}{2}, \delta \phi_{2}=\frac{i \varphi_{1}}{2}, \delta \varphi_{1}=-\frac{\phi_{2}}{2}, \delta \varphi_{2}=\frac{i \phi_{1}}{2}
\end{aligned}
$$

mixes fields arrong ore another (ie. "rearranges the labels" on Field operators)

We have now identified all the spacetime and globe((ie .constant) symmetries of \mathcal{L}. To wrap up, a little dimensional anabasis.:

In QFT, $\hbar=c=1$, so there is only one dimensionful quantity, which we typically taler as mass. Dimensions will be computed in powers of mas, and deroted $[\cdots]=d$
Ex.

$$
\left.\begin{array}{l}
{[m]=1} \\
{[E]=\left[m c^{2}\right]=[m]=1} \\
{[T]=\left[\frac{\hbar}{E}\right]=\left[E^{-1}\right]=-1} \\
{[L]=[C T]=[T]=-1}
\end{array}\right\} \begin{aligned}
& {\left[x^{m}\right]=-1} \\
& {\left[d^{4} x\right]=-4}
\end{aligned}
$$

Action S should be dimensionless in there wits:

$$
\begin{aligned}
{\left[\int d^{4} \times \mathcal{L}\right]=0 \Rightarrow } & {\left[d^{4} \times\right]+[\alpha]=0 } \\
& -4+[\alpha]=0 \\
& {[\alpha]=4 }
\end{aligned}
$$

The key, to understanding 90% of QFT in 4 spacetime dimension!
We saw that for a scalar field, a mas term can be written ns $\subset \rightarrow m^{2} \Phi^{+} \Phi$. So with $[m]=1$, we mast have $[\Phi]=1$ "contain:"
$\left[\partial_{m}\right]=\left[\frac{\partial}{\partial x^{m}}\right]=\left[\frac{1}{x^{m}}\right]=1$, so $\left[\partial_{\mu} \Phi\right]=2$ and the derivative ("kinetic") term also hat diversion 4: [9"v $\left.9_{\mu} \Phi^{+} \partial_{v} \Phi\right]=4$. $\left[\left(\Psi^{+} \Phi\right)^{2}\right]=4$, but what about $\left(\Phi^{+} \Phi\right)^{3}$? To put this in a Laspasian must include a dimasionful constant $\left[\frac{1}{n^{2}}\right]=-2$ such that $\frac{1}{\Lambda^{2}}\left(\text { I }^{+} \text {I }\right)^{3}$ has diversion 4. This means that something interestry, happens at energies 1 ; more on this in the last 2 weeks of the consed!

