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Let's make these considerations concrete by considering a specific
Lagrangian for a collection of complex scalar fields
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Claim ! this Lagrangian describes A massive
,
relativistic scalar fields
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First let 's expand out L just to see there is nothing mysterious

in the notation :
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quadratic in the fields

,
so will give free -particle
equations of motion+ ( terns proportional to d)

For now, let 's set 1=0 and only look at the quadratic terms.



To find equation of motion, use Euler-Lagrange equation
'
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Get identical equations Fo- Oz , 4 , ya : not a surprise, since they appear s>metrically
in L (more on this Shorty)

can succinctly write all 4 equations by treating I , It as independent

fields :
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This solves the equation for ay a, 6 as long as lknk^=mJ , the
correct energy -moment relation for a relativistic massive particle .
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g consider the symmetries of L
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• Poincare ! If we transform coordinates x
"
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I should take the sane value in both coordinate systems
.

So we should shift the argument of E ;
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(I itself doesn't get a Lorentz transformation matrix because it has spin O)

This is just the generalization of the
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We are implicitly

considering active transformations,
where coordinates stay fixed and

fields transform,

which is just a convention .
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Look at derivative term
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Lagrangian stays exactly tie some apart from a shift

in coordinates
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So
,
if we drive equations of moth- from T (Sdk LCEKI ) ) -- O,
they will take the same form after a Lorentz transformation

.
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Einstein notation is a powerful way to encode Lorentz invariance:

L

if a Lagrangian has all indices contracted
,

it's invariant under

Lorentz transformations.

e. g. 2. I du E is not Lorentz - invariant
, but da I 2-I is
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Just like with Lorentz /Poincare; we can consider infinitesimal transformations :
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This is a convenient calculator-al trick, so let 's apply it :
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If X is Hermitian ,
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Why such instead of UCL ) ?



Suppose we diagonalize M so det M = IT
,

Xi (product of eigenvalues)
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SUCZ ) ( indeed
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Back to Lagrangian : again, any terms with an equal number

of It and It are invariant .
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What does TE do to be fields in I ? Write out some examples :
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We hare now identified all the spacetime and global lie. consist )
&

symmetries of L .

To wrap up, a little dimensional analysis :
-

In QFT
,
t -- c = I

,

so there is only one dimension ful quantity,
which we typically take as mass

.
Dimensions will be computed in

powers of mass, and denoted C - - - J -
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Action S should be dimensionless in these units ?
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the key to understanding
90% of QFT in A

spacetime dimensions !
We saw that fo- a scalar field
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a mass term can be written
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but what about #

+EP ? To put this in a Lagrangian

must include a dimensional constant [ at) = - 2 such that

# (Itoi )
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has dimension 4

.

This means that something interesting

happens at energies N : none on this in the last Zweeks of the coma!


