Gauge invariance and spin-1

Not invariant argume! We can fix this with a trick: swap out all instances of ∂_{μ} with $D_{m} \equiv \partial_{m} -iQA_{m}(x)$ (covariant derivative) and define A_{m} to have the transformation rule $\boxed{\int A_{m} = \partial_{m} \alpha}$ and infinitesimal Then $D_{m} \overline{\Phi} = \partial_{\mu} \overline{\Phi} - iQA_{m} \overline{\Phi}$ $\implies = \partial_{\mu} \overline{\Phi} - iQA_{m} \overline{\Phi}$ $\implies = iQ\partial_{\mu} \overline{\Phi} = \partial_{\mu} \overline{\Phi} - iQ(A_{m} + \partial_{m} \alpha) e^{iQ\alpha} \overline{\Phi}$ $= iQ\partial_{\mu} \alpha e^{iQ\alpha} \overline{\Phi} + e^{iQ\alpha} \partial_{\mu} \overline{\Phi} - iQA_{m} e^{iQ\alpha} \overline{\Phi} + iQ\partial_{\mu} \alpha e^{iQ\alpha} \overline{\Phi}$ $= e^{iQ\alpha} (\partial_{m} \overline{\Phi} - iQA_{m} \overline{\Phi}) = e^{iQ\alpha} D_{m} \overline{\Phi}$ Transformation of A_{μ} cancels extra term from derivative of local symmetry parameter

So, we can promote a global symmetry $\overline{\Phi} = e^{iRx} \overline{\Phi}$ to a local Symmetry $\overline{\Phi} \longrightarrow e^{iRx(x)}\overline{\Phi}$, at the cost of introducing arother field A_m which has its own non-homospherous transformation rule $A_n \longrightarrow A_n + \partial_n \alpha$.

- Turns out this is the correct way to incorporate interactions with spin-1 fields! An will be the photon, and & is the electric charge.
- · In fact, this transformation rule for Am is required for a consistent, unitary theory of a massics spin-1 particle: invariance under this local transformation is known as gauge invariance.

Let's put I aside for now and just consider what form the Lagrangian for An Must take.

- · Lorentz invariance: An is a Lorentz vector, so $A_n(x) \rightarrow \Lambda'_n A_v(\Lambda^-|x)$. So the "principle of contracted indices" holds: $A_n A^m$ is Lorentz-invariant, as is $(\partial_n A_v)(\partial^m A^v)$, etc.
- Gauge invariance: we want \mathcal{L} to be invariant under $A_n \Rightarrow A_n + \partial_n x$. Try writing down a mass term: $S\left(\frac{1}{2}m^2A_nA^m\right) = \frac{1}{2}m^2\left(SA_nA^m + A_nSA^m\right)$ $= m^2 \partial_n x A^m \neq 0$

Surprise! A mass term is not allowed by gauge invariance. What about terms with derivatives? Something like $\partial_m A_U$ will pick up $\partial_m \partial_V \alpha$. Concared this with a compensation term $\partial_U \partial_m \alpha$, which comes From $\partial_V A_m$. This leads to $\mathcal{L}_A = -\frac{1}{4} (\partial_m A_V - \partial_V A_m) (\partial^m A^V - \partial^V A^m)$ convertional Face, Field stream tensor With $A_n = (\emptyset, \widehat{A})$, the electromagnetic potentials, you will find that \mathcal{L} is none other than the Maxwell Lagrangian, $\frac{1}{2}(\widehat{E}^{-}-\widehat{B}^{2})$.

But the photon has I polarizations, i.e. I independent components of Am, which is a 4-vector. How do we get rid of the I extracous components?

Note that A² has no time derivatives: do Ao never appears in Larrayian, so its equation of motion doesn't involve time. Therefore Ao is not a propagating degree of Freedom! this follows immediately from writing & [Fav]. Can solve for A² in terms of A.

/3

· Choose a gauge, for example $\overline{\mathcal{D}}\cdot \widehat{\mathcal{A}} = \mathcal{D}$, Solve for one componet of $\widehat{\mathcal{A}}$ in terms of the other two, and what's left are the two propagating degrees of Freedom, whose equations of motion are $\prod \widehat{\mathcal{A}} = \mathcal{D}$.

The counting is fairly straightformed as above, but not Lorentz invariance, under a Lorentz transformation, A° mixes with \overline{A} , $\overline{P} \cdot \overline{A} = O$ is not preserved, etc.

Repeat the above analysis using mitary representations of the Lorentz group.

A 4-vector An must have some Hilbert space representation (An), So we can write a stake (4> as a linear combination of the components: (4> = co | Ao>+C, 1A, >+C, 1A, >+C, 1A, >

This stak must have positive norm: $\langle 4 | 4 \rangle = |c_0|^2 + |c_1|^2 + |c_2|^2 + |c_3|^2 > 0.$

But if the components of Am change under a Lorantz transformation, we can change the norm, which is bad; the Lorentz transformation matrices are not unitary!

Alternatively, we could redefine the norm to be Lorentz-invariant,

$$\langle \Psi | \Psi \rangle = |c_0|^2 - |c_1|^2 - |c_2|^2 + |c_3|^2$$
, but as is not positive definite!
Solution in two steps: (1) use fields as the representation, which
do have writery (infinite-dimensionel) representations, and (2) project out the
Wrong-sign component. Since vectors live in the $(\frac{1}{2}, \frac{1}{2})$ representation,
which has $j=0$ and $j=1$ components, this is equivalent to projecting
out the $j=0$ component, (eaving $j=1$ as appropriate to spin-1.
Write Am in fourier space: $A_m(x) = \int \frac{d^4\mu}{(m)!} \epsilon_n(\mu) e^{i\mu x}$
A Loratz transformation will act on this field as
 $A_m(x) \rightarrow \Lambda_m^0 A_n(\Lambda^{-1}x) = \int \frac{d^4\mu}{(m+1)!} \Lambda_m^0 \epsilon_V(\mu) e^{i\mu (\Lambda^{-1}x)}$
Follow many linearly independent polarization vectors?
Equations of motion; $(A + Hw)$
 $\Box A_m - \partial_m (\partial^{-1}A_v) = 0$

Choose a gauge such that
$$\partial^{\nu}A_{\nu}=0$$
. (in always do this: if
 $\partial^{\nu}A_{\nu} = X$, take $A_{\nu} = A_{\nu} + \partial_{\nu}\lambda$, $\partial^{\nu}A_{\nu} = X - \partial^{\nu}\lambda$. Solve for λ to cace(X.)
=> in Formier space, $p^{2}=0$ and $p \cdot e = 0$. The latter is an algebraic
constraint which is Lorentz-invariant, so it projects out spin-0 as
Assired. Reduces four polarizations $E_{n}^{\nu} = (1,0,0,0)$, $E_{n}^{1} = (0,1,0,0)$, ---
to three. But we have one more gauge transformation left!
Can still have $A_{n} = \partial_{n}\lambda$ consistent with $\partial^{\nu}A_{n} = 0$ if $\partial^{\nu}\lambda = 0$.
In this case, A_{n} is gauge-equivalent to O (or pure gauge)
and not physical. After Fourier-transforming, this means
the polarization proportional to q -momentum ($E_{n} \propto p_{n}$)
is un physical.

We are thus left with two independent polorization vectors:
in a frame where
$$p_n = (E, 0, 0, E)$$
, they are
 $E'_n = (0, 1, 0, 0)$ } linear polarization
 $E'_n = (0, 0, 1, 0)$
 0^{-}
 $E'_n = \frac{1}{4\pi}(0, 1, -i, 0)$ } circular polarization
 $E'_n = \frac{1}{4\pi}(0, 1, i, 0)$ } circular polarization
 $E'_n = \frac{1}{4\pi}(0, 1, i, 0)$ } Circular polarization
 $E'_n = \frac{1}{4\pi}(0, 1, i, 0)$ }
In AFT, these polarization vectors represent physical states, so
we can take linear combinations of them:
 $e.f. \quad |E> = C_1 | 1> + C_2 | 2> \cdot Define = -E_p^{(1)} E^{-n}(j)$
 $C \in |E> = |c_1|^2 < 1| 1> + |c_2| < 2> + C_p^{-1} C_2 < 1| 2> + C_1 C_2^{-1} < 211>$
 $-(E'_n)^{-1} E^{-n} = 1$ $= 0$ since E'_n and E'_n are principal

5

= 1C,1 + 1Cy12

This inner poduct is Lorentz-invariant because the basis vetos Charge under Lorentz, but not the coefficients! Moreover, gausse invariance let us get rik of the states with non-positive norm? $E_n^o = (1,0,0,0) = 2 \quad < 0 | 0 > z \quad -1 \quad , \ 6ad!$ $E_n^F = (1,0,0,1) = 2 \quad < F | F > = 0, \quad un physical (cancels out of any$

$$\mathcal{L} = |\mathcal{D}_n \overline{\Psi}|^2 - m^2 \overline{\Psi}^+ \overline{\Psi} - \lambda (\overline{\Psi}^+ \overline{\Psi})^2 - \frac{1}{4} F_{nv} F^{nv}$$

Note: $[\mathcal{A}_m] = [\mathcal{D}_n] = |$ From covariant derivative, so $(F_m F^{nv}) = 4$,
as required.

The derivative term in the Lagrangian to- $\overline{\Psi}$ with only $\begin{bmatrix} 6 \\ 0c \\ global symmetry, <math>\partial_n \overline{\Psi} \overline{\partial}^n \overline{\Psi}$, gave rise to the equations of motion for non-interacting (Free) scalar Fields. Once promoted to a covariant derivative, $[D_n \overline{\Psi}]^2$ contains interactions between $\overline{\Psi}$ and A_m .

- $\begin{aligned} |\mathcal{D}_{n}\mathcal{P}|^{2} &= (\partial_{n}\mathcal{P}^{+} + i\mathcal{Q}A_{n}\mathcal{P}^{+})(\partial^{n}\mathcal{P}^{-} i\mathcal{Q}A_{n}\mathcal{P}) \\ &= \partial_{n}\mathcal{P}^{+}\partial^{n}\mathcal{P}^{-}A_{n}(-i\mathcal{Q}(\mathcal{P}^{+}\partial^{n}\mathcal{P}^{-} \partial^{n}\mathcal{P}^{+}\mathcal{P})) + \mathcal{Q}^{2}A_{n}A^{n}I\mathcal{P}I^{n} \\ &\quad in \mathcal{Q}M, \ txis \ uou(d \ be \ te \\ \mathcal{D}Dh(\mathcal{D}) &= 0 \end{aligned}$
 - probability current for the wavefunction. In QFT, it's literally the electric current for a charged scalar particle.

 $= \int Contains - \frac{1}{9} F_{nv} F^{nv} - A_{nv} \int which is exactly how you would write Maxwell's equations with an external source <math>\int^{n} = (P, J)!$ so \overline{P} sources currents, which create \overline{E} and \overline{B} fields from A_{nv} which back-reacts on \overline{P} . These coupled equations are impossible to solve exactly, so starting in 2 weeks we will use perturbation theory in the coupling strength Q to approximate the solutions.