Game invariance and spin-1
Recall our scalar Lagrangian from last time:

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

We san that $\delta \Phi=i Q \alpha \Phi$ was a symmetry. What if we let $\alpha=\alpha\left(x^{-}\right)$ depend on spacetime position? This is a local transformation because it's a different action at each point, in contrast to global which is the save everywhere.
The spacetime dependence doesn't affect the second and third terms, which remain invariant, but it does chare the first are:

$$
\begin{aligned}
\delta\left(\partial_{\mu} \Phi^{+} \partial^{n} \tilde{\Psi}\right) & =\partial_{\mu} \delta \Phi^{+} \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(\delta \Phi) \\
& =\partial_{\mu}\left(-i Q \alpha(x) \Phi^{+}\right) \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(i Q \alpha(x) \Phi) \\
& =-i Q \partial_{\mu} \alpha \Phi^{+} \partial^{\mu} \Phi+i Q \partial^{\mu} \alpha \partial_{\mu} \Phi^{+} \Phi
\end{aligned}
$$

Not invariant armure!
We con fix this with a trick: sump out all instances of ∂_{n} with

$$
D_{\mu} \equiv \partial_{\mu}-i Q A_{\mu}(x) \quad \text { (covariant derivative) }
$$

and define A_{μ} to have the transformation rule $\delta A_{\mu}=\partial_{\mu} \alpha$ for bon finite
Then $D_{\mu} \Phi=\partial_{\mu} \Phi-i Q A_{\mu} \Phi$

$$
\begin{aligned}
& \rightarrow \partial_{m}\left(e^{i \alpha \alpha} \Phi\right)-i Q\left(A_{\mu}+\partial_{\mu} \alpha\right) e^{i \alpha \alpha} \Phi \\
& =i Q \partial_{\alpha} \alpha e^{i \alpha \alpha} \Phi+e^{i \alpha \alpha} \partial_{\mu} \Phi-i \alpha A_{\mu} e^{i \alpha \alpha} \Phi+i Q \partial_{\mu} \alpha e^{i \alpha \alpha} \Phi \\
& =e^{i \alpha \alpha}\left(\partial_{m} \Phi-i Q A_{\mu} \Phi\right)=e^{i \alpha \alpha} D_{\mu} \Phi
\end{aligned}
$$

Transformation of A_{m} cancels extra term for derivative of local symmetry parameter

$$
\Rightarrow D_{\mu} \Phi^{+} D^{\mu} \Phi \rightarrow\left(e^{-i \alpha \alpha} D_{\mu} \Phi^{+}\right)\left(e^{i \alpha \alpha} D^{\mu} \Phi\right)=D_{\mu} \Phi^{+} D^{\mu} \Phi
$$

invariant under local symmetry

So, we con promote a global symurety $I \rightarrow e^{i<\alpha} \Phi$ to a cal Symmetry $\Phi \rightarrow e^{i ब \alpha(x)} \Phi$, at the cost of introducing another field A_{m} which has its own non-homogereous tronstornation rule $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha$.

Why in the world could we do this?

- Turns out this is the correct way to incorporate interactions with spine fields: Am will be the photon, and Q is the electric charge.
- In fact, this traatormatton rule tor An is required for a consistent, unitary theory of a massless spin-1 particle: invariance under this local transformation is known as gauge invariance.

Let's put I aside for now and just consider what form the Lagrangian for A_{m} must take.

- Lorentz invariance: A_{μ} is a Lorentz vector, so $A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{v}\left(\Lambda^{-1} x\right)$. So the "principle of contracted indices" holds: $A_{\mu} A^{\prime \prime}$ is Loretz-invariant, as is $\left(\partial_{\mu} A_{v}\right)\left(\partial^{\mu} A^{v}\right)$, eta.
- Gauge invariance: we want \mathcal{L} to be invariant under $A_{m} \rightarrow A_{\mu}+\partial_{n} \propto$. Try writing down a mass term:

$$
\begin{aligned}
\delta\left(\frac{1}{2} n^{2} A_{\mu} A^{m}\right) & =\frac{1}{2} n^{2}\left(\delta A_{m} A^{\mu}+A_{\mu} \delta A^{n}\right) \\
& =n^{2} \partial_{\mu} \times A^{\mu} \neq 0
\end{aligned}
$$

Surprise! A mas term is not allowed by gauge suraiance.
What about terms with derivatives? Something like $\partial_{m} A_{v}$ will pick up $\partial_{\mu} \partial_{v} \alpha$. Con cancel this with a comparsath, term $\partial_{v} \partial_{\mu} \alpha$, which comes from $\partial_{v} A_{m}$. This leads to $\mathcal{L}_{A}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{v} A_{\mu}\right)\left(\partial^{2} A^{\nu}-\partial^{\nu} A^{\sim}\right)$ convational Fro, field strengon tensor

With $A_{m}=(\phi, \vec{A})$, the electromagnetic potentials, you will find that \mathcal{L} is none otter than Ne Maxwell Lagrangian, $\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)$.

But the photon has 2 polarizations, ie, 2 independent components of $A m$, which is a 4-vector. How do we get rid of the 2 extraneous components?

- Note that A^{0} has no time derivatives: $\partial_{0} A_{0}$ never appears in Layrassian, So its equation of motion doesnit involve time. Therefore A_{0} is not a propagating degree of freedom: this follows imediatec, from writs> 〈[Fmv]. can solve for A^{2} in terms of \vec{A}.
- Choose a gauge, for example $\vec{\nabla} \cdot \vec{A}=0$. Solve for one component if \vec{A} in terms of k other two, and whats left are he tho propagating degrees of freedom, whose equations of motion are $\square A^{(1,2)}=0$.

The comettry is fairly straightforward as above, but not Lorentz invariance: under a Lorentz transformation, A^{0} mixes with $\vec{A}, \vec{\nabla} \cdot \vec{A}=0$ is not preserved, etc.

Repeat the above analysis using unitary rep-esatations of the Lorentz group.
A 4 -vector A_{μ} must hare some Hilbert space representation $\left|A_{\mu}\right\rangle$, So we can write a state $|\psi\rangle$ as a linear constination of the components:

$$
|\psi\rangle=c_{0}\left|A_{0}\right\rangle+c_{1}\left|A_{1}\right\rangle+c_{2}\left|A_{2}\right\rangle+c_{1}\left|A_{3}\right\rangle
$$

This stalk must have positive norm:

$$
\left.\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}\right\rangle 0
$$

But if the components of An change under a Lorentz transtormetion, we can chase re norm, which is bad; the lorentz transformation matrices are not unitary!

Alternatives, we could redefine the norm to be Lorentz-invariant, $\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}-k,\left.\right|^{2}$, $b_{u t}$ ais is not positive definite!
Solution in two steps: (1) use fields as the representation, which do have witary (infinite-dimessional) representations, and (2) project out the wrong-sign component. Since vectors live in the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation, which has $j=0$ and $j=1$ components, this is equivalent to projecting out the $j=0$ component, leaving $j=1$ as appropriate for spin-1.

Mometum-dependet
polarization polarization vector-
Write A_{μ} in Fourier space: $\quad A_{\mu}(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} \epsilon_{\mu}(p) e^{i p \cdot x}$ A Lorene transformation will act on Pis field as

$$
A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{\mu}\left(\Lambda^{-1} x\right)=\int \frac{d^{4} \rho}{(2 \pi)^{4}} \underbrace{v}_{\mu} \epsilon_{\nu}(p) e^{i p \cdot\left(\Lambda^{-1} x\right)}
$$

polarization vectors rotate, but Pu (a dummy integration variable) does not.
How many linear independent polarization vector?
Equations of notion: (HW)

$$
\square A_{\mu}-\partial_{\mu}\left(\partial^{v} A_{v}\right)=0
$$

Choose a gauge such that $\partial^{v} A_{v}=0$. (can always do this: if $\partial^{v} A_{v}=X$, trike $A_{v} \rightarrow A_{v}+\partial_{v} \lambda, \partial^{v} A_{v} \rightarrow X-\partial^{2} \lambda$. Solve for λ to cancel X.)
\Rightarrow in Foxier space, $p^{2}=0$ and $p \cdot \epsilon=0$. The latter is an algebraic constraint which is Lorentz-invaint, so it projects out spin- 0 as desired, Reduces for polarizations $\epsilon_{m}{ }^{0}=(1,0,0,0), \epsilon_{\mu}{ }^{\prime}=(0,1,0,0), \ldots$ to three. But we have ore more quire transformation left! Con still have $A_{m}=\partial_{\mu} \lambda$ consistent with $\partial^{2} A_{\mu}=0$ if $\partial^{2} \lambda=0$. In this case, A_{μ} is gauge-equivalet to O (or pure gauge) and not physical. After Fowier-tcanstorming, this means the polarization proportional to 4 -momentum $\left(\epsilon_{m} \propto p_{n}\right)$ is un physical.

We are Rus left with two independent polarization vectors. in a frame where $\rho_{\mu}=(E, 0,0, E)$, bey are

$$
\begin{aligned}
& \epsilon_{\mu}^{\prime}=(0,1,0,0) \quad\{\text { linear polarization } \\
& \epsilon_{\mu}^{2}=(0,0,1,0) \\
& \epsilon_{\mu}^{L}=\frac{1}{\sqrt{2}}(0,1,-i, 0) \quad \text { \} circular polarization } \\
& \epsilon_{\mu}^{R}=\frac{1}{\sqrt{2}}(0,1, i, 0) \quad
\end{aligned}
$$

In QFT, these polarization vector represent physical stater, so we con trite linear combinations of them:

$$
\begin{aligned}
& \text { es. }|\epsilon\rangle=c_{1}|1\rangle+c_{2}|2\rangle \text {. Define }\langle i 1 j\rangle=-\epsilon_{\mu}^{(i)} \epsilon^{j \mu(j)} \\
& \langle\epsilon \mid \epsilon\rangle=\left|c_{1}\right|^{2}\langle 1 \mid 1\rangle+\left|c_{2}\right|^{2}\langle 212\rangle+c_{1}^{\infty}{ }^{\infty} c_{2}\langle 1 \mid 2\rangle+c_{1} c_{2}{ }^{\infty}\langle 211\rangle \\
& -\left(\epsilon_{n}^{\prime}\right)^{s} \epsilon^{\prime m}=1 \\
& =\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}
\end{aligned}
$$

This inner product is Lorentz-insmiunt because the basis vectors Charge under lorentz, but not the coefficients! Moreover, gauge invariance let us get til of the states with non-poritive norm:

$$
\epsilon_{\mu}^{0}=(1,0,0,0)=\langle\langle 0 \mid 0\rangle=-1 \text {, bad! }
$$

$\left.\epsilon_{\mu}^{f}=(1,0,0,1)=\right\rangle\langle f \mid f\rangle=0$, unphysical (cancels out of any (forward, or longitudinal, polarization) computation)
At long last, our new Lagrangian is

$$
\alpha=\left|D_{m} \Phi\right|^{2}-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} F_{\mu v} F^{n v}
$$

Note: $\left[A_{\mu}\right]=\left[\partial_{m}\right]=1$ from covariant derivative, so $\left[F_{m} F^{n u}\right]=4$, as required.

The derivative term in the Lagrangian to- I with only the global symmetry, $\partial_{n} \Phi^{+} \partial^{n} \Phi$, gave rise to the equations of notion for non-interacting (free) scalar fields. Once promoted to a covariant derivative, $\left|D_{m} \Phi\right|^{2}$ contains interactions between Φ and Am.

$$
\begin{aligned}
\left|D_{\mu} \Phi\right|^{2} & =\left(\partial_{\mu} \Phi^{+}+i Q A_{\mu} \Phi^{+}\right)\left(\partial^{m} \Phi-i Q A_{\mu} \Phi\right) \\
& =\partial_{\mu} \Phi^{+} \partial^{m} \Phi-A_{\mu}\left(-i Q\left(\Phi^{+} \partial^{m} \Phi-\partial^{\mu} \Phi^{+} \Phi\right)\right)+Q^{2} A_{\mu} A^{\mu}|\Phi|^{2}
\end{aligned}
$$

in QM, this nonce be the probability current for the wavetraction. In QET, it's literally the electric current for a charged scalar particle.
$\Rightarrow \mathcal{L}$ contains $-\frac{1}{4} F_{v v} F^{\sim v}-A_{\mu} J^{m}$, which is exactly how you mould write Maxuellis equations with an external source $J^{n}=(\rho, \vec{\jmath})!$ So Φ sowces currents, which create \vec{E} and \vec{B} firlds from A_{r}, which back-reacts on 区. These coupled equations are impossible to solve exactly, so starting in 2 week, we will use perturbation theory in the coupling strength Q to approximate the solutions.

